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Summary

The dynamics of species concentrations of chemical reaction networks are given by
autonomous first-order ordinary differential equations. Singular perturbation methods
allow the computation of approximate reduced systems that make explicit several time
scales with corresponding invariant manifolds. This thesis presents:

1. An algorithmic approach for the computation of such reductions on solid analytical
grounds. Required scalings are derived using tropical geometry. The existence of
invariant manifolds is subject to certain hyperbolicity conditions. These conditions
are reduced to Hurwitz criteria and discrete combinatorial conditions on degrees,
which are technically solved using SMT over nonlinear real and linear integer
arithmetic, respectively. The approach is implemented in Python and applied to
a large body of known biochemical models.

2. ODEbase, a repository of biochemical models that has been created to provide
real-world input data in a form that is suitable for symbolic computation software.
ODEbase has been populated with semi-automatic conversions of several hundred
SBML models from the BioModels database and is available to everyone at
https://odebase.org.

3. A calculus for model-driven computation of disjunctive normal forms of real
constraints from conjunctions of such disjunctive normal forms, which is required
for the tropicalization in 1. The calculus technically once more builds on SMT
solving, here over linear real arithmetic. Compared to existing software like
Redlog, its implementation generally shows significant speedups, and a number of
otherwise infeasible computations finish within seconds.
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Preface

The evolution in time of the species concentrations of many chemical reaction net-
works can be modeled and analyzed with autonomous first-order ordinary differential
equations. Such systems of differential equations can answer questions analytically
about the qualitative behavior of the described system, like stability, periodicity, or
multistationarity. However, the analysis of high-dimensional differential equations is
often computationally infeasible. Through model reduction one aims to find models
that—in certain regions of the phase space—behave approximately like the original
model, yet are smaller, which makes them easier to handle. Singular perturbation
methods have proven to be an effective tool to find such reduced systems. However,
systems of differential equations must be already partitioned into several time scales
to be accessible to singular perturbation methods. Time scales are a coarse-grained
measure of the speed at which differential variables change. For each time scale, vari-
ables in even faster time scales are assumed to be already in equilibrium and variables
in slower time scales are assumed to be constant. Building on mathematical theory
by Tikhonov and Fenichel for two time scales, recent advances by Cardin and Teixeira
allow to expand this to three and more time scales.

The algorithmic approach described in this thesis rests on rigorous mathematical
methods to compute invariant manifolds and corresponding reduced systems. At the
same time, this approach provides a thorough algorithmic description for computations
of such reductions in practice. The existence of invariant manifolds is subject to
hyperbolicity conditions, for which an algorithmic test based on Hurwitz criteria is used.
Verification of the Hurwitz criteria and a technical issue of verification of smoothness
are accomplished with the help of Satisfiability Modulo Theories (SMT) solving.

The algorithms are implemented and tested against a large body of known biochemical
models. For that purpose, ODEbase, a repository of biochemical models, has been
created and filled with 662 models from the curated branch of the BioModels database.
Furthermore, a Web front-end has been built to allow free public access to the repository.

To find appropriate scalings for singular perturbation theory, methods from tropical
geometry are used. Since the pertinent computations of tropical equilibrations can be
very time-consuming, special attention is given to efficiency. This leads to a novel
method to compute a DNF of quantifier-free first-order formulas over the reals from
an input of a conjunction of DNFs. This method is also based on SMT solving. It
is implemented, tested, and benchmarked with all appropriate models from ODEbase.
Also, it is compared against Redlog, the only established software that can perform this
operation.

The original contribution of this thesis is, first and foremost, the algorithmic formu-
lation of the scaling and reduction process. Furthermore, the ODEbase repository for
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Preface

biochemical systems of differential equations contains original work, since the systems
need to be substantially pre-processed from their original BioModels sources. Lastly,
the novel method to construct a DNF with the help of SMT solving is an original
contribution.

This thesis is divided into seven chapters. The first chapter introduces chemical
reaction networks and illustrates how their dynamics can be described by ordinary
differential equations (ODEs). We explain mass action kinetics and provide examples of
an ODE system describing a chemical reaction network with mass action kinetics. Some
basic properties of ODEs are mentioned and singular perturbation theory in the sense
of Tikhonov and Fenichel is illustrated for two time scales. For systems with polynomial
vector fields, we state a general procedure for scaling that is the mathematical basis of
our reductions. Lastly, we introduce tropical equilibrations which are used to provide
exponent vectors required for the scaling procedure.

Chapter 2 explains singular perturbation methods for three and more time scales
based on the theory of Cardin and Teixeira. A check for hyperbolic attractivity is
formulated that, if affirmative, ensures that invariant manifolds exist. The theory of
multiple invariant manifolds that are nested, each with a corresponding reduced system,
is laid out. For the scaling of variables, we use tropical equilibrations, that is, the idea
of the equilibration of dominant monomials. A rigorous mathematical connection from
scaled systems to the theory of Cardin–Teixeira is provided.

In section 2.3, we present a precise formulation of algorithms for all steps from scaling
to the computation of reduced systems, except the computation of the DNF that is
discussed later in a separate chapter. Included is, among others, the verification of
hyperbolic attractivity, a sufficient test for smoothness required by Cardin–Teixeira,
and the computation of the tropical equilibration. Furthermore, algorithms for the
simplification of the reduced systems and the defining equations of invariant manifolds
as well as the back-transformation of the reduced systems are presented.

Chapter 3 contains a model-driven method to compute a DNF of quantifier-free
first-order formulas from a conjunction of DNFs. The computation of a single DNF is an
intermediate step needed to compute an explicit tropical equilibration. Previously, this
computation was often very time-consuming, therefore a faster method was desirable.
The new method is derived in the form of a calculus, complete with proofs of termination,
soundness, and minimality. Additionally, the new method gives rise to an algorithm.

In Chapter 4, we present ODEbase, a repository of ODE systems for systems biology.
We explain why commonly used formulations of models in SBML are not sufficient for
symbolic computation and how SBML-formulated models are converted to become the
content of ODEbase. Information about ODEbase data sets are outlined, and a freely
available Web service is introduced, illustrated by several screenshots.

The calculus from Chapter 3 has been prototypically implemented in Python and
is called SMTcut. Chapter 5 contains benchmarks of this implementation on suitable
models from ODEbase from Chapter 4. This is compared against benchmarks done
with Redlog.

In Chapter 6 we present several examples of reduced systems with details of the
reduction and verification procedure. These systems have been reduced with a pro-
totypical Python implementation of our algorithms as described in earlier chapters.
We illustrate this with plots of the corresponding direction fields and a closer look at
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systems where the reduction procedure stopped early. Finally, Chapter 7 contains our
conclusion and an outlook on possible future work.
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Chapter 1

Introduction

This thesis deals with analytical reductions of systems of ordinary differential equations
specifying species concentrations for biological and chemical reaction networks. In this
chapter, we will introduce several key concepts and recall a number of facts that will
be used later on.

We start by introducing (bio-)chemical reaction networks, which form the foundation
of our investigations. The mathematical modeling and analysis of chemical reaction
networks involves ordinary differential equations (ODEs) as a potent tool. After
recalling some fundamental facts about ODEs and their qualitative theory, we present
a short survey of mass action kinetics, which governs the dynamics of many chemical
reaction networks.

Then, we take a first look at the classical results of singular perturbation theory due
to Tikhonov and Fenichel, which yields reductions of systems that are partitioned into
two time scales.

Finally, we discuss the preparation of systems for the application of singular pertur-
bation theory with three and more time scales. To this end, we introduce scalings and
discuss some of their general properties. We close the chapter by taking a first look at
tropical equilibrations, which allow us to determine appropriate scalings.

1.1 Chemical Reaction Networks
Chemical reaction networks (CRNs) describe the simultaneous interaction of chemical
species. A species is a class of (bio-)chemical entities, e.g., atoms or molecules, whose
members are chemically identical. We use the words “chemical” and “biochemical”
interchangeably, but are particularly interested in biochemistry.

The interaction of chemical species of a specific reaction network with one another
can be described by reactions. They describe how to convert input species, called
reactants, to output species, called products. Names, which for simplicity are often
letters, are assigned to all species, and with their help reactions can be written down
easily. It might look like this:

CH4 + 2O2 −−→ CO2 + 2H2O, (1.1)

or even only
2A + B −−⇀↽−− 3C, (1.2)

5



Chapter 1 Introduction

where species A, B, and C might remain anonymous. Equation (1.1) is an irreversible
reaction, whereas (1.2) is a reversible reaction. The double-arrow is a shorthand for two
separate one-way reactions. The object at each side of the arrows is called a complex,
that is to say, a complex is a sum of species.

We assume that all chemical reactions take place in a well-stirred reactor where
temperature, volume and other thermodynamic parameters are constant. This is
a simplification from what happens in nature, but is approximately true for most
biochemical reactions. Furthermore, it allows a convenient mathematical formulation of
the dynamics by ordinary differential equations, which we introduce in the next section.

The number of molecules of a certain species in a complex is called their stoichiometric
coefficient. On the left side of (1.2), the stoichiometric coefficients of A, B, and C in
“2 A + B” are 2, 1, and 0, respectively.

Chemical reaction networks consist of multiple reactions happening simultaneously
with products of one reaction being possible reactants of another. Some networks
approach a stable state, that is, the molar concentrations of all species approach constant
values as time progresses. Yet, other networks show different evolutions. There are
many possible ways the dynamics of a particular reaction network may evolve over time:
there might be a steady state which is unstable, there may be multiple steady states,
there might be oscillation between multiple states, or the dynamics could be chaotic
altogether. Our goal is to come to an understanding about the evolution of networks by
analytical methods. But first, we have to find a way to describe a network’s dynamics.

1.2 Ordinary Differential Equations
The dynamics of species concentrations for chemical reaction networks can be described
by systems of autonomous explicit first-order ordinary differential equations (ODEs),
which we now briefly introduce. Informally speaking, an ODE determines the time
evolution of a quantity where the velocity of change is determined by its momentary
state. Note that we often use Newton’s dot notation to represent a time derivative for
variable t, that is

ẋ := dx
dt .

Definition 1.1. Let U ⊆ Rn be open and non-empty, and f : U → Rn continuously
differentiable. Then one calls

ẋ(t) = f(x(t)) (1.3)
an autonomous ordinary differential equation of first order. A solution φ of this
differential equation is a differentiable function φ : J → U , with J ⊆ R a nondegenerate
interval, such that

φ̇(t) = f(φ(t))
for all t ∈ J.

If furthermore φ(0) = y ∈ U , then one calls φ a solution of the initial value problem

ẋ(t) = f(x(t)), x(0) = y. (1.4)

To remind the reader, a nondegenerate interval contains more than a single element.
Also notice that the “x(t)” in (1.3) is just a placeholder for an actual function.
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1.2 Ordinary Differential Equations

Example 1.1. As a simple example for a differential equation we consider decay, which
happens in chemical reactions as well as in physics and many other fields. Assume that
the velocity of decay of quantity N(t) is proportional to its abundance. This leads to
the differential equation

Ṅ(t) = −λN(t), (1.5)

where λ > 0 is the proportionality constant. The minus sign signifies a decrease of
the quantity. To solve this equation, we look for a function N(t) : R → R that solves
(1.5). We find that N(t) = N0 e

−λt works fine, as the reader can easily convince himself
of. The newly introduced variable N0 has to be determined by the initial condition
N(0) = N0. △

This is an example of a first-order autonomous ordinary differential equation, where
“first order” refers to the order of the derivative. The adjective “ordinary” implies
that there is only one so-called independent variable, namely t, in contrast to partial
differential equations that contain multiple independent variables, and the modifier
“autonomous” means that the independent variable does not explicitly occur on the
right hand side of the differential equation.

To properly solve autonomous ordinary first-order differential equations, we must be
sure that solutions exist at all and that they are unique. The following theorem makes
sure that this is the case. For a proof, see Amann [1].

Theorem 1.1 (Existence and uniqueness, and dependence on initial values). Let U, f
as in Definition 1.1, and y ∈ U.

1. Then the initial value problem given by (1.4) has a unique solution F (t, y) on an
interval Imax(y) ∈ R, where the solution cannot be extended beyond this interval.

2. Furthermore, the set

Ũ :=
⋃
y∈U

(Imax(y) × {y}) ⊆ R × U

is open and the map
F : Ũ → U, (t, y) 7→ F (t, y)

is continuously differentiable. If f is a Cr-function with r > 1, then the same
holds for F.

Since we frequently deal with parameter dependent differential equations, the following
theorem provides existence and uniqueness results for those.

Theorem 1.2 (Dependence on parameters). Let V ⊆ Rn ×Rm be open and non-empty,
h : V → Rn continuously differentiable, (y, p) ∈ V , and H(t, y, p) a solution to

ẋ(t) = h(x(t), p) with x(0) = y.

Then H is defined on an open subset of R×Rn ×Rm and is continuously differentiable.
If h is a Cr-function with r > 1, then the same holds for H.

7



Chapter 1 Introduction

Furthermore, the following theorem provides conditions for a solution F (t, y) for
given y to exist for all t ∈ [0,∞). That is, solutions persist for all positive times.

Theorem 1.3. Let U, f as in Definition 1.1, y ∈ U, and F (t, y) a solution to the initial
value problem (1.4) on the interval Imax(y) ⊆ R. If there exists a closed and bounded
set K ⊊ U such that

F (t, y) ∈ K for all t ∈ Imax(y), t ≥ 0

then it holds that
Imax(y) ∩ [0,∞) = [0,∞).

The following definition introduces some notions we will later need.

Definition 1.2. Let U, f, F as in Theorem 1.3, Y ⊂ U, F (t, y) a solution to the initial
value problem (1.4) on the interval Imax(y) ⊆ R. Then

(i) Y is called positively invariant for (1.4), if for each y ∈ Y and all t ∈ Imax(y) ∩
[0,∞) it holds that F (t, y) ∈ Y.

(ii) Y is called invariant for (1.4), if for each y ∈ Y and all t ∈ Imax(y) it holds that
F (t, y) ∈ Y.

If Y is also a submanifold of Rn, then Y is called a positively invariant manifold or
invariant manifold, respectively.

We remind ourselves here that, informally speaking, a manifold is a topological space
that locally resembles Euclidean space near each point. That is, around every point is
a neighborhood that is topologically the same as the unit ball in Rn.

1.3 Mass Action and Related Kinetics
Now, we define some entities that we already informally talked about. We follow
Feinberg [30, Definition 3.1.1] with the following formal definition.

Definition 1.3. A chemical reaction network consists of three sets:

• A finite set S of species with n = |S|.

• A finite set C ⊂ [0,∞)n of vectors, called complexes.

• A finite set R ⊆ C × C, called reactions.

We assume a fixed, yet arbitrary ordering of species. Molar concentrations will
usually be called x1, . . . , xn and stoichiometric coefficients for species in a complex c1,
. . . , cn. Furthermore, if we want to convey the name of the species, we write [A] to
denote the molar concentration in time of species A.

For a complex c = (c1, . . . , cn) and molar concentrations x = (x1, . . . , xn), we
abbreviate

xc := xc1
1 · · ·xcn

n .

8



1.3 Mass Action and Related Kinetics

If in the above equation both xi and ci are 0, we use the convention 00 = 1.
As has already been stated, the dynamics of species concentrations of a chemical

reaction network, given the conditions in Section 1.1, can be described by ordinary
differential equations. They describe the change of each species’ concentration over time.
To actually write down the dynamics, we still need a rate function that determines the
speed of the reaction. Call this function Kc→c′(·) for each reaction in question, where
the index signifies reaction c → c′, with c, c′ ∈ C. The system of all Kc→c′(·) is called a
kinetics. The rate function takes as parameter the vector of molar concentrations, here
usually called x. It is understood that those concentrations cannot be negative.

Consider the forward reaction of (1.2):

2A + B −−→ 3C. (1.6)

Each time this reaction takes place, two molecules of A and one molecule of B are
lost and three molecules of C are gained. Hence, the induced system of differential
equations looks like this:

˙[A] = −2K2 A+B→3 C(x)
˙[B] = −K2 A+B→3 C(x)
˙[C] = 3K2 A+B→3 C(x).

The fact that the stoichiometric coefficients reappear on the right hand side of the
differential equations is due to our choice of molar concentrations.
Example 1.2. Consider this slightly more interesting reaction network [70]:

E + S −−⇀↽−− C −−→ E + P.

It describes three reactions taking place. The differential equations that are induced by
this chemical reaction network are:

˙[E] = −KE+S→C(x) + KC→E+S(x) + KC→E+P(x)
˙[S] = −KE+S→C(x) + KC→E+P(x)
˙[C] = KE+S→C(x) − KC→E+S(x) − KC→E+P(x)
˙[P] = KC→E+P(x). △

Definition 1.4. A chemical reaction network (S, C,R) together with a kinetics K is
called a kinetic system (S, C,R,K).

In general, for a kinetic system given as (S, C,R,K), for each species i ∈ {1, . . . , n}
the following differential equation holds:

ẋi =
∑

(c,c′)∈R
(c′
i − ci) Kc→c′(x). (1.7)

One of the most common kinetics is mass action kinetics [106]. It is based on
the assumption that the reaction rate is proportional to the product of the molar
concentrations of the reactants. The underlying idea is that each reactant has a certain
probability to be at a certain point in space and that this probability is proportional to
the molar concentration of the reactant, cf. Feinberg [30, Chapter 2.1.2].

This leads to the following definition, which also follows Feinberg [30, Definition 3.2.6].

9



Chapter 1 Introduction

Definition 1.5. A kinetics K for a chemical reaction network (S, C,R) is called mass
action if for each c → c′ ∈ R there exists a kc→c′ ∈ (0,∞) such that

Kc→c′(x) = kc→c′ xc. (1.8)

Such kc→c′ is called the rate constant for reaction c → c′.

With that in mind, we write down the differential equations of a chemical reac-
tion network with mass action kinetics. For each species i ∈ {1, . . . , n} the molar
concentration over time is described by

ẋi =
∑

(c,c′)∈R
(c′
i − ci) kc→c′ xc. (1.9)

It is evident from the above equation (1.9) that the right hand side of the differential
equation is a polynomial over R[x1, . . . , xn]. Note that for the methods we are going to
describe we only need polynomial right hand sides in our differential equations, not
necessarily mass action kinetics. However, mass action is a prominent example of a
kinetics that produces such equations.

Example 1.3. We revisit Example 1.2, which is in fact the famous irreversible Michaelis–
Menten reaction [70], a prototypical enzymatic reaction. This system is described by
the chemical reactions

E + S k1−−⇀↽−−
k−1

C k2−−→ E + P, (1.10)

where E, S, C, and P are the enzyme, substrate, enzyme-substrate complex, and
product, respectively. We have introduced shorter names for the rate constants, namely
k1 := kE+S→C, k−1 := kC→E+S, and k2 := kC→E+P. By convention, the rate constants
are written on top of or, for reverse reactions, below of the reaction arrows. Then the
differential equations that are induced by this kinetic system are

˙[E] = −k1[E][S] + k−1[C] + k2[C]
˙[S] = −k1[E][S] + k−1[C]
˙[C] = k1[E][S] − k−1[C] − k2[C]
˙[P] = k2[C].

(1.11)

△

1.4 Singular Perturbation Theory
Ordinary differential equations are a useful mathematical tool to describe the dynamics
of kinetic systems. Recall that the reason for us to seek such a description is the desire
to understand the evolution of such kinetic systems.

However, kinetic systems that model processes in nature often have many differential
variables and different reactions may take place at different time scales, that is to say,
at different speeds. This makes analysis and even simulation computationally expensive,
if not infeasible. Model reduction, that is, the search for smaller models that under
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certain conditions behave approximately like the original model, is thus a worthwhile
endeavor.

Given a system with different time scales and prescribed “slow” and “fast” variables,
singular perturbation theory provides a method to determine asymptotically invariant
manifolds and reduced systems on these manifolds.

In the following, we formalize the above for two time scales. This is due to Tikhonov
[102] and Fenichel [31]. Example 1.4 was previously published in [51]. First, we recall
the following definition.

Definition 1.6. We write the Jacobian matrix in the following shorthand form, which
is due to Euler. For

f : Rn → Rm, (x1, . . . , xn) 7→ f(x1, . . . , xn)

with x = (x1, . . . , xn), f = (f1, . . . , fm), and s ∈ {1, . . . , n} we define

Dx1,...,xsf :=


∂f1
∂x1

. . .
∂f1
∂xs

. . . . . . . . . . . . . . . .
∂fm
∂x1

. . .
∂fm
∂xs

 and Df :=


∂f1
∂x1

. . .
∂f1
∂xn

. . . . . . . . . . . . . . . .
∂fm
∂x1

. . .
∂fm
∂xn

 .
We start with a system with a small parameter ε for which intuitively z1 ∈ D ⊆ Rn1

contains variables that change rapidly, whereas z2 ∈ G ⊆ Rn2 contains variables that
change more slowly in comparison, with n1 + n2 = n. Formally, this is

ż1 = f1(z1, z2) + ε(. . . )
ż2 = εf2(z1, z2) + ε2(. . . ),

(1.12)

where the dots represent sufficiently differentiable functions in z1, z2, and ε. We also
perform a rescaling to “slow time” τ := εt, that is, substituting t = τ

ε . To distinguish
the two different time derivatives, we use Lagrange’s prime notation when we mean a
time derivative for τ , that is

x′ := dx
dτ . (1.13)

After cancellation, this yields

εz′
1 = f1(z1, z2) + ε(. . . )
z′

2 = f2(z1, z2) + ε(. . . ).
(1.14)

We call (1.12) the fast system and (1.14) the slow system.

Theorem 1.4 (Tikhonov–Fenichel). We assume that the following holds.

(i) The so-called critical manifold Z̃ is not empty, that is

Z̃ := { (z1, z2) ∈ D ×G | f1(z1, z2) = 0 } ̸= ∅.

(ii) There exists ν > 0 such that for all (z1, z2) ∈ Z̃, every eigenvalue of the partial
derivative Dz1f1(z1, z2) has a real part ≤ −ν.

11
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Then there exists T > 0 and a neighborhood of Z̃ in which all solutions of (1.12)
converge uniformly to solutions of

0 = f1(z1, z2)
z′

2 = f2(z1, z2)
(1.15)

on [t0, T ], for arbitrary t0 > 0.

Condition (ii) guarantees that locally the implicit equation f1(z1, z2) = 0 can be
resolved into the form z1 = h(z2), for some function h, due to the implicit function
theorem. Given such a resolution, we have the differential equation

z′
2 = f2(h(z2), z2). (1.16)

Notice that it may not be possible to determine h explicitly. For a more detailed
discussion, see Verhulst [104, Section 8.2].

Example 1.4. We illustrate this process on the aforementioned Michaelis–Menten
reaction, already described in Example 1.3:

E + S k1−−⇀↽−−
k−1

C k2−−→ E + P.

We proceed similarly to Heineken, Tsuchiya, and Aris [39]. Observe that the mechanism
has two conserved quantities [E] + [C] =: α and [S] + [C] + [P] =: β, where α and β
are constant functions representing the respective total concentrations. We choose the
concentration units such that β = 1, and furthermore rename α =: ε. We assume that ε
is small. Thus, from a biological standpoint, the total concentration of enzyme is small.
Next, we eliminate the variable [E] = ε− [C] and notice that variable [P] = 1 − [S] − [C].
Applying this to (1.11) leads to the following reduced system of differential equations:

˙[S] = −εk1[S] + (k1[S] + k−1)[C]
˙[C] = εk1[S] − (k1[S] + k−1 + k2)[C].

The parameter ε represents the ratio of total concentrations α to β.
Next, we perform a rescaling and introduce new variables z1 and z2, and substitute

[C] = εz1 as well as [S] = z2. The biochemical rationale behind this rescaling is that
one considers the case where there is only a small amount of C, the enzyme-substrate
complex. This yields the following system of differential equations:

ż1 = k1z2 − (k1z2 + k−1 + k2)z1

ż2 = ε(−k1z2 + (k1z2 + k−1)z1).
(1.17)

This matches the set-up in (1.12) with

f1(z1, z2) = k1z2 − (k1z2 + k−1 + k2)z1,

f2(z1, z2) = −k1z2 + (k1z2 + k−1)z1,

12
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and no further terms. The next step is the rescaling to slow time by substituting t = τ
ε ,

which yields the analogue to (1.14), namely

εz′
1 = k1z2 − (k1z2 + k−1 + k2)z1

z′
2 = (−k1z2 + (k1z2 + k−1)z1).

This then leads for ε → 0 to the system

0 = k1z2 − (k1z2 + k−1 + k2)z1 (1.18)
z′

2 = (−k1z2 + (k1z2 + k−1)z1), (1.19)

where (1.18) is the quasi-steady-state condition. We substitute (1.18) into (1.19) to
arrive at the following equation, which is the concretization of (1.16) from Theorem
1.4 above:

z′
2 = − k1k2z2

k1z2 + k−1 + k2
. (1.20)

This is the same result as Briggs and Haldane found [15].
Now we prove that this reduction is correct by checking the conditions in Theorem 1.4.

(i) The critical manifold

Z̃ := { (z1, z2) | k1z2 − (k1z2 + k−1 + k2)z1 = 0 }

is not empty, since obviously (0, 0) ∈ Z̃.

(ii) For all (z1, z2) ∈ Z̃, every eigenvalue of

Dz1f1(z1, z2) = ∂(k1z2 − (k1z2 + k−1 + k2)z2)
∂z1

= −(k1z2 + k−1 + k2)

has a real part ≤ −ν, with ν = k−1 + k2, where k−1 and k2 are both assumed
positive.

A back-transformation to time t yields the reduced system

0 = k1z2 − (k1z2 + k−1 + k2)z1

ż2 = −ε k1k2z2
k1z2 + k−1 + k2

.
(1.21)

△

In Section 2.1, we use a generalization of Theorem 1.4 by Cardin and Teixeira [18]
that allows the partitioning into more than two time scales and we present algorithms
for the reduction process.
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1.5 A General Scaling Procedure
The results of this section were previously published in [51]. Our starting point is a
parameter dependent system S of n polynomial ordinary differential equations

ẋk = dxk
dt =

∑
J

γk,J x
J , 1 ≤ k ≤ n, (1.22)

where the summation ranges over multi-indices J = (j1, . . . , jn) ∈ Nn, γk,J ∈ R, and
only finitely many γk,J are non-zero. Note that we use the convention that the natural
numbers N include 0. We use the notation “1 ≤ k ≤ n” to express something for all n
values of k at once.

Throughout this work, we require that positive xk remain positive as time progresses.
In other words, the positive first orthant U := (0,∞)n is positively invariant for system
(1.22), which is the case for (1.22) if and only if γk,JxJ ≥ 0 on all intersections of
hyperplanes { (x1, . . . , xn) ∈ Rn | xk = 0 } with U .

We fix some ε∗ ∈ (0, 1), which intuitively is thought to be “small”, and we impose
that

γk,J = ε∗
ck,J γ̄k,J , (1.23)

with rational numbers ck,J . The tacit understanding is that only nonzero γk,J are being
considered. The intuitive idea, which will be made more precise in Section 2.2, is that
the γ̄k,J are close to one. Moreover, we introduce a positive parameter ε and consider
the system

ẋk =
∑
J

εck,J γ̄k,J x
J , 1 ≤ k ≤ n, (1.24)

with ε-dependent coefficients. Notice that (1.24) matches (1.22) at ε = ε∗. By
renormalizing

xk = εdkyk, dk ∈ Q, (1.25)
one obtains a system in scaled variables

ẏk =
∑
J

εck,J +⟨D,J⟩−dk γ̄k,J y
J , 1 ≤ k ≤ n, (1.26)

with D = (d1, . . . , dn) and the dot product in Rn denoted by ⟨·, ·⟩. This transformation
preserves the positive invariance of U .1 Continuing, we set

νk = min{ ck,J + ⟨D,J⟩ − dk | γ̄k,J ̸= 0 }

to obtain
ẏk = ενk

∑
J

εck,J +⟨D,J⟩−dk−νk γ̄k,J y
J , 1 ≤ k ≤ n, (1.27)

where now all exponents of ε inside the sums are nonnegative. Finally, one may perform
a preliminary time scaling τ = εµt, µ = min{ν1, . . . , νn} to arrive at

y′
k = dyk

dτ = ενk−µ∑
J

εck,J +⟨D,J⟩−dk−νk γ̄k,J y
J , 1 ≤ k ≤ n, (1.28)

1Underlying the scaling is the implicit assumption that for i, j ∈ {1, . . . , n}, the relative order of xi

with respect to xj is bounded by xi/xj = Θ(εdi−dj ) for ε→ 0, so that all yk have the same order
of magnitude.
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with all exponents nonnegative. We are interested in system (1.28) for variable ε > 0,
in the asymptotic limit ε → 0.

We adopted a rather general scaling formalism that has been used recently in
several publications [75, 76, 81, 82, 94] and is recurrent in the literature on singular
perturbations, see for instance Nipp [74, Section 3].

So far, scaling has been a formal exercise. The question remains where the numbers
ck,J in (1.23) and the vector D = (d1, . . . , dn) in (1.26) may come from. That will be
made precise in Section 2.2. We use tropical geometry for that purpose, which we
introduce in the next section.

1.6 Tropical Equilibrations
Tropical geometry [16, 62], a relatively new subfield of mathematics, offers new possibili-
ties for the analysis of parameter-dependent polynomial or rational ordinary differential
equations. It has also applications in economics and optimization like network flows and
scheduling. Tropical equilibration methods for the analysis and reduction of chemical
reaction networks were introduced and developed in a series of papers by Noel et
al. [76], Radulescu et al. [82], Samal et al. [94, 93], and others. These methods allow
to determine scalings of polynomial or rational vector fields that model the kinetics
of biochemical networks and open a feasible path to reduction of networks of high
dimension. For a given system, they provide a list of possible slow-fast systems, which
may or may not yield invariant manifolds and reduced systems.

We present a very short introduction to tropical geometry as far as it concerns
us for the matter at hand and how to compute the tropical equilibration of a set of
polynomials. Parts of this section were previously published in [51]. As for the name,
Katz [47] instructs us that

“tropical geometry is named in honor of Brazilian computer scientist Imre
Simon. This naming is complicated by the fact that he lived in Sao Paolo
and commuted across the Tropic of Capricorn. Whether or not his work is
tropical depends on whether or not he preferred to do his research at home
or in the office.”

Definition 1.7. The tropical semi-field (T,⊕,⊗) is defined as T := R ∪ {∞}, with
addition defined as minimization and multiplication as classical addition:

x⊕ y := min{x, y} and x⊗ y := x+ y.

The neutral element of multiplication is 0, and the neutral element of addition is ∞.
Notice that there is no general notion of subtraction: we cannot call any number “13
minus 4”, since there is no x such that 4 ⊕ x = 13. That is what makes T a semi-field.
Notice furthermore that addition is an idempotent operation, that is, x⊕ x = x. Thus,
tropical polynomials are piecewise linear concave curves with integer coefficients.

Example 1.5. The following is an example of a tropical polynomial and how it translates
into classical algebra:

(x1 ⊗ x1 ⊗ x1) ⊕ (x1 ⊗ x1 ⊗ x2) ⊕ x3 = min{3x1, 2x1 + x2, x3}. △
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From a practical standpoint, tropicalization of a classical polynomial is the following
process: map all variables to new names, say, from x to x̄. Then, replace “x+ y” by
“min(x̄, ȳ)”, “x · y” by “x̄ + ȳ”, and “xc” by “c · x̄”. Coefficients “c” are replaced by
“logε∗(|c|)” with ε∗ ∈ (0, 1) [62]. More formally, this leads to the following

Definition 1.8. Let g : Rn → R, multi-indices J = (j1, . . . , jn) ∈ Nn, γJ ∈ (0,∞),
ε∗ ∈ (0, 1). Then, the classical polynomial

g(x) =
∑
J

γJx
J (1.29)

induces the tropical polynomial

trop(g)(x̄) = min
J

{logε∗(|γJ |) + ⟨x̄, J⟩}. (1.30)

In Section 1.5 we left unresolved the question of how to choose ck,J and D. In view
of singular perturbation theory reductions, it is sensible to choose the scaling in such a
way that cancellation of lowest order monomials is possible. This will be discussed in
more detail in Section 2.2.2.

Consider a classical polynomial like the right hand side of (1.22) and partition its
monomials by their sign into two sets, P and N . Tropicalize the monomials in both
sets and call the resulting sets P̄ and N̄ . Call the tropical monomials in those sets
P̄i and N̄j , respectively. Then, the tropical equilibration is the set of points where the
minimum is attained at least twice, that is, at least once on each side:

min
i

{P̄i} = min
j

{N̄j}. (1.31)

The resulting inequalities and equalities can be interpreted geometrically as a polyhedron
in Rn with codimension of at least one, since the polyhedron contains by definition at
least one equation.

The tropical equilibration of a set of polynomials is the set of points where the tropical
equilibrations of all tropical polynomials coincide. Geometrically, it is the intersection
of the polyhedra from (1.31) for different tropical polynomials. This intersection has
the form of a union of polyhedra. We choose values for D = (d1, . . . , dn) in (1.26) from
one of those polyhedra.

Example 1.6. As an example, we consider BIOMD000000716, which is related to the
transmission dynamics of subtype H5N6 of the influenza A virus in the Philippines in
August 2017 [56]. The model specifies four species: Susceptible birds (S_b), Infected birds
(I_b), Susceptible humans (S_h), and Infected humans (I_a), the molar concentrations
of which over time we map to differential variables y1, . . . , y4, respectively. The input
system is given by

ẋ1 = − 9137
2635182x1x2 − 1

730x1 + 412
73

ẋ2 = 9137
2635182x1x2 − 4652377

961841430x2

ẋ3 = − 1
6159375000x2x3 − 1

25258x3 + 40758549
3650000

ẋ4 = 1
6159375000x2x3 − 112500173

2841525000000x4.

(1.32)
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The numbers are the parameter values as specified in the biomodel.
Now we set the left hand sides to zero and partition the monomials by sign. This

leads to the following system:

9137
2635182x1x2 + 1

730x1 = 412
73

4652377
961841430x2 = 9137

2635182x1x2
1

6159375000x2x3 + 1
25258x3 = 40758549

3650000
112500173

2841525000000x4 = 1
6159375000x2x3.

(1.33)

Next, we tropicalize each side of each equation, setting ε∗ = 1
5 . For practical reasons,

which will be made precise later, we round the result of the logarithm in (1.30) to integer
values. This yields

min{4 + x̄1 + x̄2, 4 + x̄1} = −1
3 + x̄2 = 4 + x̄1 + x̄2

min{14 + x̄2 + x̄3, 6 + x̄3} = −1
6 + x̄4 = 14 + x̄2 + x̄3.

(1.34)

Further simplification leads to

x̄1 = −1
x̄2 = −4
x̄3 = −7
x̄4 = −3

(1.35)

and hence we use D = (−1,−4,−7,−3) in (1.26).
Following (1.25), this leads to the following relabeling: x1 = ε−1y1, x2 = ε−4y2,

x3 = ε−7y3, and x4 = ε−3y4. The corresponding version of (1.26) is

ẏ1 = −5710625
2635182y1y2 − ε4 125

146y1 + 412
365

ẏ2 = ε3 5710625
2635182y1y2 − ε3 116309425

192368286y2

ẏ3 = −ε10 15625
15768y2y3 − ε6 15625

25258y3 + ε6 40758549
18250000

ẏ4 = ε6 15625
15768y2y3 − ε6 112500173

181857600y4.

(1.36)

△

Example 1.7. As another example, recall the Michaelis–Menten system from (1.11):

˙[E] = −k1[E][S] + k−1[C] + k2[C]
˙[S] = −k1[E][S] + k−1[C]
˙[C] = k1[E][S] − k−1[C] − k2[C]
˙[P] = k2[C].

First, we replace the species C, S, and E by variables x1, x2, and x3. We may disregard
the fourth equation. Notice that the order of variables has been changed, so x1 and x2
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map to the same species as y1 and y2, respectively, did in Example 1.4. This yields

ẋ1 = k1x2x3 − k−1x1 − k2x1

ẋ2 = −k1x2x3 + k−1x1

ẋ3 = −k1x2x3 + k−1x1 + k2x1.

(1.37)

Since we have no values for the parameters k1, k−1, and k2, we assume they are of
order 1, more exactly: they are ∈ [√ε∗,

√
1/ε∗]. Next, we set the left hand side to zero

and partition the system by sign of the monomials, which yields

k−1x1 + k2x1 = k1x2x3

k1x2x3 = k−1x1

k1x2x3 = k−1x1 + k2x1.

(1.38)

Since we assumed the parameters are of order 1, their logarithm is 0. Hence, after
tropicalization this is the result:

min{x̄1, x̄1} = x̄2 + x̄3

x̄2 + x̄3 = x̄1

x̄2 + x̄3 = min{x̄1, x̄1},
(1.39)

which is in all three cases the equation

x̄2 + x̄3 = x̄1. (1.40)

From this we can choose D = (1, 0, 1). This can be plugged into (1.25) to lead to
x1 = ε1y1, x2 = ε0y2, x3 = ε1y3. Notice that this is the same scaling that we used in
(1.17), in our example of Tikhonov’s theorem. Since we assume the parameters k1, k−1,
and k2 to be near 1, the ck,J are 0. This then yields the following specialized version of
(1.26) for our system:

ẏ1 = k̄1y2y3 − k̄−1y1 − k̄2y1

ẏ2 = −εk̄1y2y3 + εk̄−1y1

ẏ3 = −k̄1y2y3 + k̄−1y1 + k̄2y1.

(1.41)

△

Example 1.8. If we consider system (1.37) from the last example, yet use k1 = k−1 = 1,
k2 = 1

5 as parameter values, this leads to the following system of differential equations:

ẋ1 = x2x3 − x1 − 1
5x1

ẋ2 = −x2x3 + x1

ẋ3 = −x2x3 + x1 + 1
5x1.

(1.42)

Again, we set the left hand side to zero and partition by sign of the monomials:

x1 + 1
5x1 = x2x3

x2x3 = x1

x2x3 = x1 + 1
5x1.

(1.43)
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1.6 Tropical Equilibrations

Now tropicalize:

min{x̄1, 1 + x̄1} = x̄2 + x̄3

x̄2 + x̄3 = x̄1

x̄2 + x̄3 = min{x̄1, 1 + x̄1},
(1.44)

which again leads to the equation

x̄2 + x̄3 = x̄1. (1.45)

△

Research suggests a correspondence between the polyhedra of a chemical reaction
network’s tropical equilibration and so-called metastable states of a chemical reaction
network. Those metastable states are where much of the observable chemical reactions
happen, cf. Samal et al. [95]:

For large networks with ordinary differential equations dynamics and multi-
ple timescales it is reasonable to consider the following property: a typical
trajectory consists in a succession of qualitatively different slow segments sep-
arated by faster transitions. The slow segments, generally called metastable
states or regimes, can be of several types such as attractive invariant mani-
folds [ . . . ] The notion of metastability generalizes the notion of attractor.
Like in the case of attractors, distant parts of the system can have coordi-
nated activity for metastability. The dynamical states of large networks can
be represented as points in a high dimensional space, called phase space.
In this representation each coordinate represents the concentration of a
molecular species. Coordinated activity means that many of the species
concentrations are correlated, which can be geometrically represented by
the proximity to a lower dimension hypersurface in the phase space. A
system remains in the proximity of an attractor after entering its basin of
attraction, but can leave a metastable regime after a relatively long time
(much longer than the time needed for transitions between two different
regimes).

In Chapter 3, we will concern ourselves with the efficient computation of the tropical
equilibration and a novel algorithm to compute it is presented.
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Chapter 2

Scaling and Reduction by
Singular Perturbation Methods

ODE systems are well suited to model species concentrations of biochemical reaction
networks. However, high-dimensional systems quickly become inconveniently hard
to discuss. Partitioning systems into multiple time scales may allow their reduction
into smaller systems and corresponding nested invariant manifolds. This can greatly
facilitate their discussion or lead to new information about the original system.

The realization of the reduction is divided into two parts. First, we need to identify
different time scales. One way to achieve this has been obtained by Noel et al. [75, 76]
and Samal et al. [94, 93] using methods from tropical geometry, which we also apply.
Having identified such time scales, the second step is to compute the reductions
themselves. To this end, singular perturbation methods and especially the theory
by Tikhonov–Fenichel [102, 31] are well known. Unfortunately, Tikhonov–Fenichel is
limited to two time scales. Taking advantage of a recent extension to multiple time
scales by Cardin and Teixeira [18], we specify this for our reaction network ODE
systems.

This approach is made explicit through a collection of algorithms that precisely
describe each part of the reduction procedure. Parts of this chapter were previously
published in [51].

2.1 Singular Perturbations for Multiscale Systems

Building on Noel et al. [75, 76], Samal et al. were among the first to analyze multi-
scale ODE systems based on tropical geometry [94, 93]. Yet they did not provide
reduced systems, nor did they check for hyperbolic attractivity. While they succeeded
in obtaining scalings via tropical geometry, they did not approach the problem of a
systematic reduction and only discussed ad-hoc examples.

There we proceed due to the new developments in a recent paper by Cardin and
Teixeira [18] which generalize Fenichel’s theory to provide a solid foundation to obtain
more than one nontrivial invariant manifold. This allows, in particular, the reduction
of multi-scale ODE systems such as system (2.16). Technically, the approach considers
a multi-parameter system using time scale factors ε1, ε1ε2, . . . instead of increasing
powers of one single ε.
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Chapter 2 Scaling and Reduction by Singular Perturbation Methods

In Section 1.4, we already discussed the partitioning of ODE systems into two time
scales and the theorem by Tikhonov and Fenichel. In the current chapter, we introduce
the theory for m > 2 time scales. To make matters transparent, yet to keep the
exposition clear, we first consider a system with three time scales in the next section
and scale this up to arbitrary m time scales in the section after that.

2.1.1 The Case With Three Time Scales

This section generalizes Kruff and Walcher [52, Section 2] and was previously published
in [51, Section 3.1]. We start with a system of ordinary differential equations in
differential variables z1, z2, z3, and derivation by τ . In analogy to system (1.14), z1,
z2, and z3 are vectors of variables.

Let z1 ∈ Rn1 , z2 ∈ Rn2 , and z3 ∈ Rn3 ; n1, n2, n3 ∈ N \ {0}, n1 + n2 + n3 = n;
f1 : Rn+2 → R, f2 : Rn+2 → R, f3 : Rn+2 → R, ε1, ε2 ∈ [0, 1). Furthermore, let
z = (z1, z2, z3), f = (f1, f2, f3), and ε̄ = (ε1, ε2). Let U ⊆ Rn be open and non-empty
and f smooth on an open neighborhood of U × [0, ϑ1) × [0, ϑ2) with ϑ1 > 0, ϑ2 > 0.
We consider the following system of differential equations:

z′
1 = f1(z, ε̄)
z′

2 = ε1f2(z, ε̄)
z′

3 = ε1ε2f3(z, ε̄).
(2.1)

We define the sets

M1 := { z ∈ U | f1(z, 0) = 0 }
M2 := { z ∈ U | f1(z, 0) = f2(z, 0) = 0 }

(2.2)

and assume that they are non-empty. Notice that U ⊇ M1 ⊇ M2. Furthermore, we let

Mε2
2 := { z ∈ U | f1(z, 0, ε2) = 0 }. (2.3)

Cardin and Teixeira’s theory [18] requires a series of hyperbolicity conditions, whereas
we use the stronger notion of hyperbolic attractivity, since in our applications we focus
on attracting invariant manifolds.

Definition 2.1. We call M1 hyperbolically attractive on U if for all z ∈ M1 all
eigenvalues of the Jacobian Dz1f1(z, 0) have negative real parts.

Furthermore, we call M2 hyperbolically attractive on M1 if the following condition
holds. Recall that the implicit function theorem yields a unique local resolution of the
equation f1(z, ε̄) = 0 in the form z1 = h(z2, z3, ε̄). With this, we define

f∗
2 (z2, z3, ε̄) := f2(z1, z2, z3, ε̄)

= f2(h(z2, z3, ε̄), z2, z3, ε̄).

The condition is now that for all z ∈ M2 all eigenvalues of Dz2f
∗
2 (z2, z3, 0) have negative

real parts.

The following proposition is similar to Kruff–Walcher [52, Proposition 1]. A proof
can be found ibid.
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2.1 Singular Perturbations for Multiscale Systems

Proposition 2.1. M2 is hyperbolically attractive on M1 if M1 is hyperbolically
attractive on U and either of the following equivalent conditions is met:

(i) For all z ∈ M2, all eigenvalues of

W (z) := Dz2f2(z, 0) −Dz1f2(z, 0)Dz1f1(z, 0)−1Dz2f1(z, 0)

have negative real parts.

(ii) For all z ∈ M2 and all sufficiently small ϱ > 0, all eigenvalues of

J(z, ϱ) :=
(
Dz1f1(z, 0) Dz2f1(z, 0)
ϱDz1f2(z, 0) ϱDz2f2(z, 0)

)

have negative real parts.

We now turn to reduction. Firstly, by introducing τ1 := τ and letting ε1 → 0 in
(2.1), we obtain the boundary layer system:

dz1
dτ1

= f1(z, 0)

dz2
dτ1

= 0

dz3
dτ1

= 0.

(2.4)

Next, we introduce τ2 := ε1τ . By substituting τ = τ2
ε1

in (2.1), canceling and letting
ε1 → 0, we arrive at the auxiliary system on Mε2

2 :

0 = f1(z, 0, ε2)
dz2
dτ2

= f2(z, 0, ε2)

dz3
dτ2

= ε2f3(z, 0, ε2),

(2.5)

and by letting ε2 → 0 in (2.5), we arrive at the intermediate reduced system on M1:

0 = f1(z, 0)
dz2
dτ2

= f2(z, 0)

dz3
dτ2

= 0.

(2.6)

Lastly, we introduce τ3 := ε1ε2τ . Again, by substituting τ = τ3
ε1ε2

in (2.1), canceling
and then letting ε1, ε2 → 0, we arrive at the completely reduced system on M2:

0 = f1(z, 0)
0 = f2(z, 0)

dz3
dτ3

= f3(z, 0).
(2.7)
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Chapter 2 Scaling and Reduction by Singular Perturbation Methods

If the sets M1 and M2 for system (2.1) are hyperbolically attractive as per Definition 2.1,
then the system can be partitioned into three time scales and the three reduced systems
(2.4), (2.6), and (2.7), where the last two systems each describe an invariant manifold.

For the following theorem see Kruff and Walcher [52, Theorem 1]. It ensures that
the reduced systems are approximate solutions to the original system.

Theorem 2.1. Let system (2.1) be given and M2 be hyperbolically attractive on M1.
Then the following holds.

1. Let N ⊆ M2 be a compact submanifold. Then for all sufficiently small ε̄,
system (2.1) admits an invariant manifold N ε̄

2 that is (ε1 + ε2)-close to N with
respect to the Hausdorff distance. Given time scale τ2, solutions of (2.1) on N ε̄

2
converge to solutions of (2.7) on N . More precisely, there exists T > 0 such that
the convergence is uniform on any closed subinterval of (0, T ) as ε → 0.

2. Let ε2 be sufficiently small and N1 ⊆ Mε2
2 be a compact submanifold. Then for

all sufficiently small ε1, system (2.1) admits an invariant manifold N ε̄
1 that is

(ε1 + ε2)-close to N1 with respect to the Hausdorff distance. Given time scale τ1,
solutions of (2.1) on N ε̄

1 converge to solutions of (2.6) on N1. As above, there
exists T > 0 such that the convergence is uniform on any closed subinterval of
(0, T ) as ε → 0.

2.1.2 The General Case

In the last section, we described the special case for m = 3 time scales. Building on this
example, in this section we expound upon the general case with m equations. We start
with a system of m ordinary differential equations in differential variables z1, . . . , zm
and derivation by τ .

Let m ∈ N \ {0}. For 1 ≤ k ≤ m, let zk ∈ Rnk , nk ∈ N \ {0}, fk : Rn+m−1 → R;∑
k nk = n. Furthermore, let z = (z1, . . . , zm), f = (f1, . . . , fm), ε1, . . . , εm−1 ∈ [0, 1),

and ε̄ = (ε1, . . . , εm−1). Let U ⊆ Rn be open and non-empty and f smooth on an open
neighborhood of U × [0, ϑ1) × . . . × [0, ϑm−1) with ϑ1 > 0, . . . , ϑm−1 > 0. We consider
the following system of differential equations:

z′
1 = f1(z, ε̄)
z′

2 = ε1f2(z, ε̄)
...

z′
m = ε1 · · · εm−1fm(z, ε̄).

(2.8)

We define the sets

M0 := U

M1 := { z ∈ U | f1(z, 0) = 0 }
...

Mm−1 := { z ∈ U | f1(z, 0) = . . . = fm−1(z, 0) = 0 }

(2.9)

and assume that all of them are non-empty. Notice that M0 ⊇ M1 ⊇ · · · ⊇ Mm−1.
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2.1 Singular Perturbations for Multiscale Systems

For 1 ≤ k ≤ m, we define time scales τk := ε1 · · · εk−1τ . As in [18, p. 1432], we also
introduce the sets

M(εk,...,εm−1)
k := { z ∈ U | fk(z, 0, . . . , 0, εk, . . . , εm−1) = 0 }, 1 ≤ k ≤ m (2.10)

and auxiliary systems on M(εk,...,εm−1)
k defined as

0 = f1(z, ε̄)
...

0 = fk−1(z, ε̄)
dzk
dτk

= fk(z, ε̄)

dzk+1
dτk

= εk . . . εm−1fk+1(z, ε̄)

...
dzm
dτk

= fm(z, ε̄)



1 ≤ k ≤ m. (2.11)

These auxiliary systems are important for the proof of Theorem 2.2 below.
We now bring forth the notion of hyperbolic attractivity for the general case.

Definition 2.2. We call M1 hyperbolically attractive on M0 if for all z ∈ M1 all
eigenvalues of the Jacobian Dz1f1(z, 0) have negative real parts. Moreover, we define
f∗

1 (z, 0) := f1(z, 0).
For k ∈ {2, . . . ,m − 1}, we call Mk hyperbolically attractive on Mk−1 if the

following condition holds. The unique local resolution of the equation fk−1(z, ε̄) = 0 is
(z1, . . . , zk−1) = hk−1(zk, . . . , zm, ε̄). With this, we define

f∗
k (zk, . . . , zm, ε̄) := fk(z1, . . . , zm, ε̄)

= fk(hk−1(zk, . . . , zm, ε̄), zk, . . . , zm, ε̄).

The condition is now that for all z ∈ Mk all eigenvalues of Dzk
f∗
k (zk, . . . , zm, 0) have

negative real parts. In the following we write f∗
k (z, ε̄), by which we mean f∗

k (zk, . . . , zm, ε̄)
for the respective k.

Furthermore, for k ∈ {1, . . . ,m} define Fk(z, ε̄) := (f1(z, ε̄), . . . , fk(z, ε̄)) and Zk :=
(z1, . . . , zk).

In the case of hyperbolic attractivity of Mk on Mk−1 we write Mk−1 ▷ Mk, oth-
erwise Mk−1 ̸ ▷ Mk. If we find for some ℓ ∈ {1, . . . ,m} that M0 ▷ M1, M1 ▷ M2,
. . . , Mℓ−1 ▷ Mℓ, then we simply write M0 ▷ · · · ▷ Mℓ, and call this a hyperbolically
attractive ℓ-chain. Such a chain is called maximal if either ℓ = m or Mℓ ̸ ▷ Mℓ+1.

The following proposition is the analog to Proposition 2.1 and was previously pub-
lished in [51, Proposition 4 & Lemma 3]. Proofs can be found ibid.

Proposition 2.2. Define A1 := Dz1f1(z, 0), and for k ∈ {2, . . . ,m− 1}(
Ak−1 Bk
Ck Vk

)
:=
(
DZk−1Fk−1(z, 0) Dzk

Fk−1(z, 0)
DZk−1f

∗
k (z, 0) Dzk

f∗
k (z, 0)

)
.

25



Chapter 2 Scaling and Reduction by Singular Perturbation Methods

Note that
(
Ak−1 Bk

Ck Vk

)
= Ak. Moreover, for k ∈ {1, . . . ,m} define

Jk(z, ϱ1, . . . , ϱk−1) :=
( 1

...
ϱ1···ϱk−1

)
·DZk

Fk(z, 0)

=


Dz1f

∗
1 (z, 0) . . . Dzk

f∗
1 (z, 0)

ϱ1Dz1f
∗
2 (z, 0) . . . ϱ1Dzk

f∗
2 (z, 0)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ϱ1 · · · ϱk−1Dz1f

∗
k (z, 0) . . . ϱ1 · · · ϱk−1Dzk

f∗
k (z, 0)

 .
Then, for k ∈ {2, . . . ,m− 1}, Mk is hyperbolically attractive on Mk−1 if Mk−1 is

hyperbolically attractive on Mk−2 and either of the following equivalent conditions is
met.

(i) For all z ∈ Mk, all eigenvalues of Wk(z) with

Wk := Vk − CkA
−1
k Bk

have negative real parts.

(ii) For all z ∈ Mk and all sufficiently small ϱ1 > 0, . . . , ϱk−1 > 0, all eigenvalues
of J(z, ϱ1, . . . , ϱk−1) have negative real parts.

Wk is also known as the Schur complement [97, 37].
We now turn to reductions of system (2.8). By introducing τ1 and letting ε1,

. . . , εm−1 → 0 in (2.8), we obtain the boundary layer system:
dz1
dτ1

= f1(z, 0)

dz2
dτ1

= 0

...
dzm
dτ1

= 0.

(2.12)

For k ∈ {2, . . . ,m}, we introduce τk by substituting τ = τk
ε1···εk−1

in (2.8), canceling and
letting ε1, . . . , εm−1 → 0, and arrive at the k-th intermediate reduced system on Mk−1:

0 = f1(z, 0)
...

0 = fk−1(z, 0)
dzk
dτk

= fk(z, 0)

dzk+1
dτk

= 0

...
dzm
dτk

= 0.

(2.13)
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We call the m-th intermediate reduced system the completely reduced system.
The following theorem is adapted from [51, Theorem 1]. For detailed statements and

proofs, see [18].

Theorem 2.2. Let system (2.8) be given and Mk hyperbolically attractive on Mk−1.
Then for all sufficiently small ε̄, system (2.8) admits an invariant manifold N ε̄

k that is
(ε1 + · · · + εm−1)-close to Mk with respect to the Hausdorff distance. Moreover, there
exists T > 0 such that solutions of system (2.8) on N ε̄

k in time scales τk+1 converge to
solutions of (2.12) for k = 0 and (2.13) for k > 1, uniformly on any closed subinterval
of (0, T ), as ε̄ → 0.

2.2 From Tropicalization to Cardin–Teixeira
This section describes how to use a scaled system as derived in Section 1.5 and transform
it such that it can be properly used with the theory of Cardin and Teixeira. This
section was previously published in [51, Sections 2 & 3.1].

2.2.1 Partitioning and Truncating a Scaled System

In Section 1.5, we described a general scaling procedure for a system of polynomial
ordinary differential equations that culminated in (1.28), which we repeat here for
convenience:

y′
k = dyk

dτ = ενk−µ∑
J

εck,J +⟨D,J⟩−dk−νk γ̄k,J y
J , 1 ≤ k ≤ n. (2.14)

We restructure (2.14) by collecting all variables with equal νi − µ in vectors z1, . . . , zm,
where zk ∈ Rnk for k ∈ {1, . . . ,m}, in ascending order of exponents and such that
n1 + · · · + nm = n. We obtain a system of the form

z′
k = εak f̃k(z, ε)

= εak

(
f̃k(z, 0) + εa

′
k,2pk,2 + · · · + ε

a′
k,wkpk,wk

)
= εak

(
f̃k(z, 0) + o(1)

)
 1 ≤ k ≤ m, (2.15)

where ak, a′
k,j ∈ Q, 0 = a1 < a2 < . . . < am, 0 < a′

k,j , and pk,j are multivariate
polynomials in z for 1 ≤ k ≤ m and 2 ≤ j ≤ wk. Note that the case m = 1 is not
excluded. By substituting δ := ε1/q with a sufficiently large positive integer q, one can
ensure that only nonnegative integer powers of δ appear:

z′
k = δbkfk(z, δ)

= δbk

(
fk(z, 0) + δb

′
k,2pk,2 + · · · + δ

b′
k,wkpk,wk

)
= δbk (fk(z, 0) + o(1))

 1 ≤ k ≤ m, (2.16)

where bk, b′
k,j ∈ N, 0 = b1 < b2 < . . . < bm, 0 < b′

k,j for 1 ≤ k ≤ m and 2 ≤ j ≤ wk.
Our idea is that the indices k correspond to different time scales δbkτ . For m > 1,

system (2.16), as δ → 0, may be thought of as separating fast variables from increasingly
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Chapter 2 Scaling and Reduction by Singular Perturbation Methods

slow ones. As it will turn out in Section 2.2.3, the exact number of time scales finally
obtained by our overall approach can actually be smaller than m.

Given the conditions made explicit in Theorem 2.2 and with their application in the
rest of this section, we may formally truncate the right hand sides of (2.16) and keep
only terms of lowest order in δ:

z′
k = δbkfk(z, 0), 1 ≤ k ≤ m. (2.17)

In the following, we refer to the transformation process from (1.22) to (1.28) and from
(2.14) to (2.16) as scaling. Strictly speaking, this comprises scaling in combination with
partitioning. We refer to the step from (2.16) to (2.17) as truncating.

2.2.2 Scaling via Tropical Geometry

The transformations leading to (1.26) are a formal exercise. No particular strategy was
applied for choosing ε∗. Instead, we choose the value of ε∗ freely to provide “power”
parametric descriptions of all the quantities occurring in the differential equations
(parameters, monomials, and time scales).

Given ε∗, we explain how to obtain the orders ck,J and D introduced in the Section 1.5
with (1.23) and (1.26), respectively. The orders ck,J are computed from ε∗ ∈ (0, 1) and
γk,J as

ck,J =
round(p logε∗ |γk,J |)

p
. (2.18)

The function round : R → Z rounds to nearest, ties to even, in the sense of IEEE 754
[43]. The positive integer p controls the precision of the rounding step. Using γ̄k,J =
γk,J/ε∗

ck,J as defined in (1.23), our definition satisfies the constraint
√
ε∗p ≤ |γ̄k,J | ≤√

1/ε∗p. The orders D = (d1, . . . , dn) satisfy certain constraints as well. Those
constraints result heuristically from the idea of compensation of dominant monomials
[75]. Slow dynamics is possible if for each dominant, i.e., much larger than the other,
monomial on the right hand side of (1.28), there is at least one other monomial of
the same order but with opposite sign. This condition, named tropical equilibration
condition [75, 76, 81, 82, 94, 93], reads

min
γk,J>0

(ck,J + ⟨D,J⟩) = min
γk,J′<0

(ck,J ′ +
〈
D,J ′〉). (2.19)

On these grounds, given system (1.22), the choice of ε∗ boils down to defining orders
of magnitude. Model parameters are coarse-grained and transformed to orders of
magnitude in order to apply tropical scaling. The result depends on which parameters
are close and which are very different as dictated by the coarse-graining procedure,
i.e., by the choice of ε∗. Decreasing ε∗ destroys details, and parameters tend to have
the same order of magnitude. Increasing ε∗ refines details, and parameters range over
several orders of magnitude.

On the one hand, we have just noted that smaller choices of ε∗ possibly hide details.
On the other hand, in Chapter 2 we reviewed singular perturbation methods, which
provide asymptotic results as a small parameter δ approaches zero. Following the
construction in Section 1.5, small choices of ε∗ lead to small δ, which gives a heuristic
argument for choosing ε∗ rather small. Thus, in practice one has to reconcile two
competing requirements, which unfortunately still requires some human intuition.
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2.2.3 Connecting to the Cardin–Teixeira Black Box

The general case as described in Section 2.1.2 assumes that hyperbolic attractivity
can be verified throughout all sets M1, . . . , Mm−1. In applications, it turns out that
hyperbolic attractivity can often be verified for only ℓ < m sets. Yet, the rest of the
system needs to be represented as well.

Furthermore, [18] and Section 2.1.2 work with ε̄ = (ε1, . . . , εm−1), i.e., a tuple of
parameters, whereas our input system (2.16) is written with a single parameters ε with
multiple different exponents. Connecting these different expositions is the content of
this section.

We consider our system (2.16) over the positive first orthant U = (0,∞)n ⊂ Rn. Let
ℓ ∈ {2, . . . ,m} and

β1 := b2 − b1 = b2, . . . , βℓ−1 := bℓ − bℓ−1. (2.20)

Furthermore, let δ1 := δβ1 , . . . , δℓ−1 := δβℓ−1 , and δ̄ = (δ1, . . . , δℓ−1).
These definitions allow us to express also all δb

′
k,j occurring in (2.16) as products of

powers of δ1, . . . , δℓ−1, with nonnegative but possibly non-integer rational exponents,
via expressing each b′

k,j as a nonnegative rational linear combination of β1, . . . , βℓ−1.
We introduce

gk(z, δ̄) := fk(z, δ), 1 ≤ k ≤ m. (2.21)

Moreover, we express

δbℓ+1 = δ1 · · · δℓ−1 · ηℓ+1(δ̄), . . . , δbm = δ1 · · · δℓ−1 · ηm(δ̄),

via
ηk(δ̄) := δbk−bℓ , ℓ+ 1 ≤ k ≤ m, (2.22)

which is obtained by writing each bk − bℓ as a nonnegative rational linear combination
of β1, . . . , βℓ−1. In these terms our system (2.16) translates to

z′
1 = g1(z, δ̄)

...
z′
ℓ = δ1 · · · δℓ−1gℓ(z, δ̄)

z′
ℓ+1 = δ1 · · · δℓ−1ηℓ+1(δ̄)gℓ+1(z, δ̄)

...
z′
m = δ1 · · · δℓ−1ηm(δ̄)gm(z, δ̄).

(2.23)

In terms of the right hand sides of (2.23), the application of relevant results in [18]
requires that g1, . . . , gℓ and ηℓ+1gℓ+1, . . . , ηmgm are smooth on an open neighborhood
of U × [0, ϑ1) × · · · × [0, ϑℓ−1) with ϑ1 > 0, . . . , ϑℓ−1 > 0. We are going to tacitly
assume such smoothness here and address this issue from an algorithmic point of view
in Section 2.3.

We are now ready to transform our system into ℓ time scales as follows:

τ1 = τ, τ2 = δ1τ, . . . , τℓ = δ1 · · · δℓ−1τ.
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Chapter 2 Scaling and Reduction by Singular Perturbation Methods

In time scale τk system (2.23) then becomes

δ1 · · · δk−1
dz1
dτk

= g1(z, δ̄)

...

δk−1
dzk−1
dτk

= gk−1(z, δ̄)

dzk
dτk

= gk(z, δ̄)

dzk+1
dτk

= δkgk+1(z, δ̄)

...
dzℓ
dτk

= δk · · · δℓ−1 gℓ(z, δ̄)

dzℓ+1
dτk

= δk · · · δℓ−1ηℓ+1(δ̄)gℓ+1(z, δ̄)

...
dzm
dτk

= δk · · · δℓ−1ηm(δ̄)gm(z, δ̄).

(2.24)

For k = 1 and k = ℓ we obtain empty products, which yield the neutral element 1, as
usual.

Equation (2.24) constitutes a version of (2.17) that can used with the theory of
Cardin and Teixeira as laid out in Section 2.1.2.

2.3 The Algorithmic Approach
This section contains the algorithms, formulated as program code, that perform au-
tomatic partitioning of an input ODE system into possibly several time scales and
computation of reduced systems. This section was previously published in [51]. In
the following, each algorithm is discussed shortly and its connection to the theory is
highlighted. Figure 2.1 depicts the flow of information between the different algorithms.

The general procedure for finding time scales and singular perturbation reduction
is as follows: systems of type (1.22) or (2.14), respectively, are scaled and truncated
with Algorithm 1 as per Section 1.5. In that process, Algorithms 2 and 3 are used to
compute ck,J and D, respectively. Algorithm 3 further utilitizes Algorithm 4 to compute
a disjunctive normal form (DNF) of polyhedra, which are the result of tropicalization.
Obtaining an efficient algorithm for the computation of this DNF is another focal
point of this thesis. An efficient algorithm will be discussed in Chapter 3 and leads to
Algorithms 11 and 12.

Algorithm 5 returns reduced systems on invariant manifolds from an input of a
scaled and truncated system. To that end, Algorithm 6 is utilized to verify hyperbolic
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2.3 The Algorithmic Approach

Algorithm 1
ScaleAndTruncate

Algorithm 5
ComputeReducedSystems

Algorithm 8
SimplifyReducedSystems

Algorithm 9
TransformBack

Algorithm 3
TropicalD

Algorithm 2
TropicalC

Algorithm 4
TropicalEquilibration

Algorithm 11
CDCFormToDNF

Algorithm 12
CDCFormToDNFSub

Algorithm 6
IsHyperbolicallyAttractive

Algorithm 7
TestSmoothness

Figure 2.1: Principal data flow between our algorithms
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Chapter 2 Scaling and Reduction by Singular Perturbation Methods

attractivity as described in Section 2.1.2, and Proposition 2.2 in particular, and
Algorithm 7 to verify smoothness conditions which were briefly mentioned after (2.23).

To return systems of the simplest possible form, Algorithm 8 uses techniques based
on Gröbner bases to simplify later reduced systems based on definitions of invariant
manifolds of earlier reduced systems. Finally, Algorithm 9 can be used to transform
the resulting reduced systems back to the original time scale, and Algorithm 10 is a
wrapper that combines all calls to the aforementioned algorithms into one function to
provide an easy user interface.

2.3.1 Algorithm 1: ScaleAndTruncate

Algorithm 1 takes as input a list S of differential equations in variables x1, . . . , xn
representing system (1.22) and a choice of ε∗ ∈ (0, 1) for (1.23). For our practical
purposes, the polynomial coefficients in S as well as ε∗ are taken from Q. Our
algorithm is furthermore parameterized with a function c mapping suitable indices to
rational numbers and a constant function d yielding either a tuple D = (d1, . . . , dn)
of rational numbers or ⊥. The black-box functions c and d reflect the mathematical
assumptions around (1.23) and (1.26) that suitable ck,J and dk exist, respectively.
Suitable instantiations for the parameters c and d can be realized, e.g., using tropical
geometry and example implementations can be found as Algorithms 2 and 3. It will
turn out that instantiations of d can fail on a given combination of S and ε∗, which is
signaled by the return value ⊥ of d, and checked right away in l.1 of Algorithm 1.

The output is a list [T1, . . . , Tm] of truncated systems in variables y1, . . . , yn. Note
that the order of δ is strictly increasing with each Tk and that the difference of the
orders of Tk and Tk+1 is an arbitrary positive integer. Furthermore, a list [P1, . . . , Pm]
of higher-order terms is returned, as well as a substitution σ.

The output satisfies the following invariant: Denote S̃ =
(⋃m

k=1 Tk ⊕ Pk
)
σ, where

(y′ = g) ⊕ p stands for y′ = g + p and is applied elementwise. Then S̃ is equal to S up
to multiplication of the differential equation ẋi = ∑

J γi,Jx
J in S with a positive scalar

factor 1/ε∗
µ+di .

2.3.2 Algorithm 2: TropicalC

Algorithm 2, which is only called by Algorithm 1, explicitly uses, besides the parameters
k and J specified for c in Algorithm 1, also the right hand sides of the input system
(1.22) and the choice of ε∗. As yet another parameter it takes the desired precision p
for rounding in (2.18). Notice that the use of this extra information is compatible with
the abstract scaling procedure in Section 1.5. Currying [22] allows to use Algorithm 2
in place of c in a formally clean manner.

2.3.3 Algorithm 3: TropicalD

Algorithm 3 is used to compute D = (d1, . . . , dn), which was introduced in (1.25). The
idea of D is to get a scaling for the variables x1, . . . , xn, such that the renormalized
variables y1, . . . , yn are more or less of the same order of magnitude. This must be, of
course, only a guess which we hope will turn out useful in the end. Since the right
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2.3 The Algorithmic Approach

Algorithm 1 ScaleAndTruncate
Input: 1. A list S =

[dx1
dt

= f1, . . . ,
dxn
dt

= fn

]
of autonomous first-order ordinary differential

equations where f1, . . . , fn ∈ Q[x1, . . . , xn];
2. c : {1, . . . , n} × {1, . . . , n}n → Q;
3. d : ()→ Qn ∪ {⊥};
4. ε∗ ∈ (0, 1) ∩Q

Output: 1. A list [T1, . . . , Tm] where, abbreviating d
dτ

by a prime, Tk = (z′
k = δbkfk) with

z′
k ⊆ [y′

1, . . . , y
′
n],
⋃

k
z′

k = [y′
1, . . . , y

′
n], z′

1, . . . , z′
m pairwise disjoint, b1 < · · · < bm ∈ N, and

fk ⊆ Q[y1, . . . , yn], or the empty list;
2. A list [P1, . . . , Pm] of lists with Pk ⊆ Q[y1, . . . , yn][δ] and |Pk| = |Tk| for k ∈ {1, . . . ,m};
3. A substitution σ for y1, . . . , yn, τ , δ, and ε

The first output [T1, . . . , Tm] contains differential equations z′
k = δbkfk(z, 0) for k ∈ {1, . . . ,m} in

terms of system (2.16). The second output [P1, . . . , Pm] contains the higher order terms in (2.16)
as polynomials pk = δbk+b′

k,2pk,2 + · · · + δ
bk+b′

k,wk pk,wk . The last output is a substitution that
undoes all substitutions applied for obtaining (2.16) from (1.22).
For q ∈ Q[y1, . . . , yn](δ) we use degδ(q) for the univariate degree of q in δ. Similarly, tmonδ(q) is
the trailing monomial in δ.

1: if d() = ⊥ then
2: return [ ], [ ], [ ]
3: end if
4: µ :=∞
5: q := 1
6: (d1, . . . , dn) := d() ∈ Qn

7: for k := 1 to n do
8: hk := 0
9: for all monomials γxJ in fk do

10: γ̄ := γ/ε∗
c(k,J) ∈ Q

11: η := c(k, J) + ⟨(d1, . . . , dn), J⟩ − dk ∈ Q
12: µ := min(µ, η) ∈ Q
13: q := lcm(q,denom η) ∈ N \ {0}
14: hk := hk + εηγ̄yJ

15: end for
16: end for
17: for k := 1 to n do
18: hk := hk/ε

µ

19: hk := hk[ε← δq] ∈ Q[y1, . . . , yn][δ]
20: gk := tmonδ hk

21: pk := hk − gk

22: end for
23: L :=

[dy1
dτ

= g1, . . . ,
dyn
dτ

= gn

]
24: [b1, . . . , bm] := sort(degδ g1, . . . , degδ gn), ascending and removing duplicates
25: for k := 1 to m do
26: Tk := [ dy

dτ
= g ∈ L | degδ g = bk ]

27: Pk := [ pj ∈ {p1, . . . , pn} | degδ gj = bk ]
28: end for
29: σ := [y1 ← x1/ε

d1 , . . . , yn ← xn/ε
dn ] ◦ [τ ← εµt] ◦ [δ ← ε1/q] ◦ [ε← ε∗]

30: return [T1, . . . , Tm], [P1, . . . , Pm], σ
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Chapter 2 Scaling and Reduction by Singular Perturbation Methods

Algorithm 2 TropicalC
Input: 1. k ∈ {1, . . . , n};

2. J ∈ {1, . . . , n}n;
3. A list S = [ẋ1 = f1, . . . , ẋn = fn] of autonomous first-order ordinary differential equations

where f1, . . . , fn ∈ Q[x1, . . . , xn];
4. ε∗ ∈ (0, 1) ∩Q.
5. p ∈ N \ {0}

Output: c ∈ Q
1: γ := coeff(fk, x

J ) ∈ Q
2: c := round(p logε∗ |γ|)/p ∈ Q
3: return c

Algorithm 3 TropicalD
Input: 1. A list S = [ẋ1 = f1, . . . , ẋn = fn] of autonomous first-order ordinary differential

equations where f1, . . . , fn ∈ Q[x1, . . . , xn];
2. ε∗ ∈ (0, 1) ∩Q.
3. p ∈ N \ {0}

Output: (d1, . . . , dn) ∈ Qn ∪ {⊥}
1: Π(a1, . . . , an) := TropicalEquilibration(S, ε∗, p)
2: if not R |= ∃a1 . . .∃anΠ then
3: return ⊥
4: end if
5: (d1, . . . , dn) := one possible choice for a1, . . . , an

6: return (d1, . . . , dn)

hand sides of functions that make up the input list S are polynomials, there is no limit
to their values and as such a scaling D will most likely not be valid for all possible
values of the domain. However, in many applications it turns out that the approach
of equilibrating dominant monomials yields values that provide meaningful invariant
manifolds and reductions.

Algorithm 3 takes parameters ε∗ and p, while d is specified in Algorithm 1 to
have no parameters at all. In l.1 we use Algorithm 4 as a sub-algorithm for tropical
equilibration. One obtains a disjunctive normal form Π, which explicitly describes a
set P = { p ∈ Qn | Π(p) } as a finite union of convex polyhedra, as known from tropical
geometry. Every (d1, . . . , dn) ∈ P satisfies (2.19). The satisfiability condition in l.2
tests whether P = ∅. We employ Satisfiability Modulo Theories (SMT) solving [73]
using the logic QF_LRA [6] for quantifier-free linear real arithmetic. The set P can be
empty, e.g, when all monomials on the right hand side of some differential equation have
the same sign and hence equilibration is impossible. Such an exceptional situation is
signaled with a return value ⊥ in l.3. In the regular case P ≠ ∅, the choice (d1, . . . , dn)
in l.5 is provided by the SMT solver.

2.3.4 Algorithm 4: TropicalEquilibration

Algorithm 4 takes as input a system S of differential equations with a polynomial vector
field, together with parameters ε∗ and p, and tries to equilibrate the monomials of each
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2.3 The Algorithmic Approach

Algorithm 4 TropicalEquilibration
Input: 1. A list S = [ẋ1 = f1, . . . , ẋn = fn] of autonomous first-order ordinary differential

equations where f1, . . . , fn ∈ Q[x1, . . . , xn];
2. ε∗ ∈ (0, 1) ∩Q;
3. p ∈ N \ {0}.

Output: A formula Π(a1, . . . , an) describing a finite union of convex polyhedra in Rn.
1: A0 := (1, a1, . . . , an) ∈ Q[a1, . . . , an]n+1

2: for j := 1 to n do
3: c := 0
4: for all monomials γxα1

1 · · ·x
αn
n in fj do

5: α0 := round(p logε∗ |γ|)/p ∈ Q
6: c := c+ 1
7: Σc := sgn γ ∈ {−1, 1}
8: Ac := (α0, α1, . . . , αn) ∈ Q× Zn ⊆ Qn+1

9: end for
10: Bj := ∅
11: for k := 1 to c do
12: for ℓ := k + 1 to c do
13: if ΣkΣℓ < 0 then
14: P := {⟨Ak −Aℓ, A0⟩ = 0} ⟨Ak −Aℓ, A0⟩ ∈ Q[a1, . . . , an]
15: for m := 1 to c do
16: P := P ∪ {⟨Am −Ak, A0⟩ ≥ 0} ⟨Am −Ak, A0⟩ ∈ Q[a1, . . . , an]
17: end for
18: Bj := Bj ∪ {P} set of sets of constraints
19: end if
20: end for
21: end for
22: end for
23: Π := CDCFormToDNF(

∧n

j=1

∨
P ∈Bj

∧
P )

24: return Π

polynomial using tropical geometry. For that, it builds a set Bj of polyhedra P for each
polynomial and computes the intersection of all such Bj , which is then transformed
into the disjunctive normal form Π. This transformation can be very time-consuming
and Chapter 3 contains an in-depth discussion of the novel Algorithm 11 for that task.

Notice that, if a polynomial fj does not contain monomials with both positive and
negative signs, the corresponding Bj is empty. In consequence, this leads to a DNF Π
that is logically equivalent to false. Furthermore, we tacitly assume that fj = 0 leads
to no execution of the loop body in l.4–9. Thus, c = 0 and Bj = ∅, leading also to
Π ≡ false.

With applications in the natural sciences one often wants to make in l.5 an adequate
choice for (d1, . . . , dn) lying in a specific convex polyhedron P ⊆ P, which technically
corresponds to one conjunction in Π. Such choices are subtle and typically require
human interaction. For instance, when the chain of reduced dynamical systems ends
with a steady state, it is interesting to consider the polyhedron P that is closest to that
steady state. Such strategies are not covered by our algorithms presented here.
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Chapter 2 Scaling and Reduction by Singular Perturbation Methods

Algorithm 5 ComputeReducedSystems
Input: Output of Algorithm 1:

1. [T1, . . . , Tm], a list of lists z′
k = δbkfk;

2. [P1, . . . , Pm], a list of lists of polynomials in Q[y1, . . . , yn][δ];

We denote ξk := |Tk|, Ξk :=
∑k

i=1 ξi, and Y = (y1, . . . , yn).
Output: A list [(M0, T1, R1), . . . , (Mℓ−1, Tℓ, Rℓ)] of triplets where ℓ ∈ {2, . . . ,m}, or the empty list.

For k ∈ {1, . . . , ℓ}, Mk−1 is a list of real constraints defining Mk−1 ⊆ Rn; Tk is a list of differential
equations; Rk is a list of trivial differential equations y′ = 0 for all differential variables from Tk+1,
. . . , Tm.
The triplets (Mk−1, Tk, Rk) represent reduced systems according to (2.25).

1: U := [y1 > 0, . . . , yn > 0]
2: M0, Z, F := [ ]
3: A :=

( )
4: for k := 1 to m do
5: z := [ y | y′ = δbkg ∈ Tk ] ⊆ Y , |z| = ξk

6: f := [ g | y′ = δbkg ∈ Tk ] = fk(z, 0) ∈ Q[Y ]ξk

7: Mk := Mk−1 ◦ [f = 0] = M0 ◦ [F = 0] ◦ [f = 0]
8: φ,A := IsHyperbolicallyAttractive(U ◦Mk, Z, z, F, f, k, A)
9: if not φ then

10: break
11: end if
12: Rk := [ y′ = 0 | y′ = h ∈ Tk+1 ∪ · · · ∪ Tm ] Ξk−1 + ξk + |Rk| = n
13: Z := Z ◦ z ⊆ Y , |Z| = Ξk

14: F := F ◦ f ∈ Q[Y ]Ξk

15: end for
16: # We either broke in line 10 preserving k, or we have k = m+ 1.
17: ℓ := k − 1
18: if ℓ < 2 then
19: return ()
20: end if
21: if TestSmoothness([T1, . . . , Tm], [P1, . . . , Pm], ℓ) = failed then
22: print “Warning: differentiability requires further verification”
23: end if
24: return [(M0, T1, R1), . . . , (Mℓ−1, Tℓ, Rℓ)]

2.3.5 Algorithm 5: ComputeReducedSystems

Algorithm 5 takes as input parts of the output of Algorithm 1 and tests for hyperbolic
attractivity as described in Section 2.1.2, especially Proposition 2.2. This test is done
incrementally by going through the scaled input systems in order of their time scales.
If the test for hyperbolic attractivity on one system fails, the procedure is terminated
and the chain of verified reduced systems is returned.

This and later algorithms use the notion of triplets (Mk−1, Tk, Rk) which contain
entries as follows:

Fk−1(z, 0) = 0, dzk
dτ = δbkfk(z, 0), dzk+1

dτ = · · · = dzm
dτ = 0. (2.25)

Each of these triplets describes a reduced system in the respective time scale.
Algorithm 5 starts with the output [T1, . . . , Tm] of Algorithm 1, which represents the

scaled system (2.17). Notice that each Tk already meets the specification in (2.25). In
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Algorithm 6 IsHyperbolicallyAttractive
Input: 1. M , 2. Z, 3. z, 4. F , 5. f , 6. k, 7. A, as in the calling Algorithm 5

Knowing thatM0 ▷ · · · ▷Mk−1, we check here whether alsoMk−1 ▷Mk. We denote ξ := |f | = |z|,
Ξ := |F | = |Z|, and X = {y1, . . . , yn}. In these terms, A ∈ Q[X]Ξ×Ξ.

Output: 1. Boolean, 2. A′ ∈ Q[X](Ξ+ξ)×(Ξ+ξ)

1: if not R |= ∃
∧
M then

2: return false,
( )

3: end if
4: V := Jacobian(f, z) ∈ Q[X]ξ×ξ

5: if k = 1 then
6: W := V
7: A′ := V
8: else
9: B := Jacobian(F, z) ∈ Q[X]Ξ×ξ

10: C := Jacobian(f, Z) ∈ Q[X]ξ×Ξ

11: W := V − CA−1B ∈ Q[X]ξ×ξ

12: A′ :=
(
A B
C V

)
∈ Q[X](Ξ+ξ)×(Ξ+ξ)

13: end if
14: χ := λξ + · · ·+ aξ := CharacteristicPolynomial(W ) ∈ Q[X][λ]
15: H := HurwitzMatrix(χ) ∈ Q[X]ξ×ξ

16: for j := 1 to ξ − 1 do
17: ∆j := det

(
Hr,s

)
1≤r,s≤j

∈ Q[X]
18: end for
19: Γ := {∆1 > 0, . . . ,∆ξ−1 > 0, aξ > 0}
20: return R |= ∀(

∧
M −→

∧
Γ), A′

l.1 we define U to contain defining inequalities of the first orthant U . Starting with
k = 1, the for-loop in l.4–15 successively constructs Mk and Rk such that in combination
with Tk from the input, (Mk−1, Tk, Rk) forms a reduced system as in (2.25). The loop
stops when either k = m+ 1 or the test in l.8 finds no hyperbolic attractivity. We are
going to discuss this test in detail in the next section. Note that we maintain a matrix
A for storing information between the subsequent calls of our test. In either case we
arrive at a maximal hyperbolically attractive (k − 1)-chain of reduced systems given as
a list [(M0, T1, R1), . . . , (Mk−2, Tk−1, Rk−1)]. The variable ℓ contains the length of this
chain, so we set ℓ to k − 1 in l.17. The test in l.18 reflects the choice of ℓ ∈ {2, . . . ,m}
at the beginning of this section. Finally, l.21 uses the second input [P1, . . . , Pm] of the
algorithm to address the smoothness requirements for system (2.23). We are going to
discuss the corresponding procedure in detail in Section 2.3.7. It will turn out that
this procedure provides only a sufficient test. Therefore we issue only a warning in
case of failure, allowing the user to verify smoothness a posteriori, using alternative
algorithms or human intelligence. One might mention that it is actually sufficient to
consider weaker, finite differentiability conditions instead of smoothness, which can be
seen by inspection of the proofs in [18].

2.3.6 Algorithm 6: IsHyperbolicallyAttractive

Algorithm 6 tests for Mk−1 ▷ Mk assuming that M0 ▷ · · · ▷ Mk−1 holds. It follows
Proposition 2.2 (i).
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In l.1 we test the non-emptiness condition imposed after (2.9). Using from the input
the defining inequalities and equations M = U ◦ Mk of Mk along with Z = Zk−1,
z = zk, F = Fk−1, f = fk, and A = Ak−1, we construct in l.4–13 A′ = Ak as noted in
Proposition 2.2. To test for negative real parts of the eigenvalues of W as per (i) of
Proposition 2.2, we use a test by Hurwitz [42]. In l.14–20 we construct the conditions Γ
for this test and perform the test itself. We additionally return A′ = Ak for reuse with
the next iteration. The validity tests in l.1 and l.20, respectively, again amount to SMT
solving, this time using the logic QF_NRA [6] for quantifier-free nonlinear real arithmetic.
Recall the positive integer parameter p used for the precision with both Algorithm 2
and Algorithm 3. For p > 1, symbolic computation possibly yields fractional powers of
numbers in the defining equations for manifolds as well as in the vector fields of the
differential equations. Such expressions are not covered by QF_NRA. When this happens,
we catch the corresponding error from the SMT solver and restart with floats.

2.3.7 Algorithm 7: TestSmoothness

Algorithm 7 tests the smoothness conditions referred to in Section 2.2.3. g1, . . . , gℓ
and ηℓ+1gℓ+1, . . . , ηmgm occurring on the right hand sides of system (2.23) all have
to be smooth on an open neighborhood of U × [0, ϑ1) × · · · × [0, ϑℓ−1) with ϑ1 > 0,
. . . , ϑℓ−1 > 0. A sufficient criterion for smoothness is that all those expressions are
polynomials in z and δ̄. Note that smoothness has to hold for the original system (2.16)
and not only for the scaled and truncated system (2.17).

Algorithm 7 specifies the sufficiency test applied in l.21 of Algorithm 5. The first
two parameters [T1, . . . , Tm] and [P1, . . . , Pm] originate from Algorithm 1, while the
last parameter ℓ originates from Algorithm 5.

In l.1–8 of Algorithm 7 we compute β1, . . . , βℓ−1 as defined in (2.20) and simulta-
neously obtain b1, . . . , bℓ. In l.9–14 we compute the set of powers of some δk that is
contained in (2.16). For checking those conditions in l.16 we once more employ SMT
solving, this time using the adequate logic QF_LIA [6] for quantifier-free linear integer
arithmetic. Since we are aiming at nonnegative integer solutions, we introduce explicit
non-negativity conditions r1 ≥ 0, . . . , rℓ−1 ≥ 0. In case of unsatisfiability, Algorithm 7
returns “failed” in l.17. Recall that in this case the calling Algorithm 5 issues a warning
but continues. In case of satisfiability, in contrast, smoothness is guaranteed, we reach
l.20, and return “true.” We remark that the computation time spent on E is negligible
compared to the SMT solving later on. The construction of the entire set E beforehand
avoids duplicate SMT instances.

2.3.8 Algorithm 8: SimplifyReducedSystems

Algorithm 8 employs Gröbner basis techniques [17, 8] to possibly simplify the defining
equations for reduced systems.

Recall that zk are the variables occurring on the left hand sides of differential equations
in Tk, and Zk−1 = (z1, . . . , zk−1). In l.1–5 we construct a block term order ω on all
variables {y1, . . . , yn} so that variables from Zk−1 are larger than variables from zk.
This ensures that all multivariate polynomial reductions with respect to ω throughout
our algorithm will eliminate variables from Zk−1 in favor of variables from zk rather
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Algorithm 7 TestSmoothness
Input: [T1, . . . , Tm], [P1, . . . , Pm], ℓ as in the calling Algorithm 5:

1. [T1, . . . , Tm], a list of lists z′
k = δbkfk;

2. [P1, . . . , Pm], a list of lists of polynomials in Q[y1, . . . , yn][δ];
3. ℓ ∈ N, ℓ ≥ 2;

We check here a sufficient criterion for smoothness as required for (2.23).
Output: “true” or “failed” in terms of a 3-valued logic;
1: b1 := 0
2: for k := 2 to ℓ do
3: bk := the unique exponent of δ in Tk

4: βk−1 := bk − bk−1
5: if βk−1 = 1 then
6: return true
7: end if
8: end for
9: E := ∅

10: for k = 1 to m do
11: for all p in Pk do
12: E := E ∪ { degδ m− bmin(k,ℓ) | m monomial of p } ⊆ N \ {0}
13: end for
14: end for
15: for all e ∈ E do
16: if not Z |= ∃r1 . . .∃rℓ−1(r1 ≥ 0 ∧ · · · ∧ rℓ−1 ≥ 0 ∧ ⟨(β1, . . . , βℓ−1), (r1, . . . , rℓ−1)⟩ = e) then
17: return failed
18: end if
19: end for
20: return true

Algorithm 8 SimplifyReducedSystems
Input: A list [(M0, T1, R1), . . . , (Mℓ−1, Tℓ, Rℓ)], the output of Algorithm 5, with entries corresponding

to (2.25)
Output: A list [(M ′

0, T
′
1, R1), . . . , (M ′

ℓ−1, T
′
ℓ , Rℓ)]; M ′

k−1 describes the same manifold as Mk−1 in a
canonical form; the system T ′

k is equivalent to Tk modulo M ′
k−1, its right hand sides are in a

canonical normal form modulo M ′
k−1, possibly with fewer different differential variables than Tk

1: for k := 1 to ℓ do
2: zk := { y | y′ = g ∈ Tk }
3: end for
4: x := { y | y′ = 0 ∈ Rℓ }
5: ω := a block term order with z1 ≫ · · · ≫ zℓ ≫ x
6: for k := 1 to ℓ do
7: F := [ f | f = 0 ∈Mk−1 ]
8: G := GroebnerBasis(Radical(F ), ω)
9: M ′

k−1 := [ g = 0 | g ∈ G ]
10: T ′

k := [ ]
11: for y′ = g in Tk do
12: T ′

k := T ′
k ◦ [y′ = h] where g −→∗

G h and h is irreducible mod G
13: end for
14: end for
15: return [(M ′

0, T
′
1, R1), . . . , (M ′

ℓ−1, T
′
ℓ , Rℓ)]
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Algorithm 9 TransformBack
Input: 1. [(M0, T1, R1), . . . , (Mℓ−1, Tℓ, Rℓ)], the output of either Algorithm 5 or Algorithm 8;

2. σ, the output of Algorithm 1
Output: A list [(M∗

0 , T
∗
1 , R

∗
1), . . . , (M∗

ℓ−1, T
∗
ℓ , R

∗
ℓ )].

1: for k := 1 to ℓ do
2: M∗

k−1 := Mk−1σ

3: v :=
(
(δbkτ)σ

)
/t, extracting δbk from Tk = ε∗

(bk/q)+µ

4: T ∗
k := [ ]

5: for all y′
j = δbkfj ∈ Tk do

6: h := (xjfj/yj)σ = ε∗
dj (fjσ)

7: T ∗
k := T ∗

k ◦ [ẋj = vh] = ε∗
bk/q+µ+dj (fjσ)

8: end for
9: R∗

k := [ ẋj = 0 | y′
j = 0 ∈ Rk ]

10: end for
11: return [(M∗

0 , T
∗
1 , R

∗
1), . . . , (M∗

ℓ−1, T
∗
ℓ , R

∗
ℓ )]

than vice versa. Prominent examples for such block orders are pure lexicographic
orders, but ordering by total degree inside the z1, . . . , zℓ, x will heuristically give more
efficient computations.

Recall that the radical ideal
√

⟨F ⟩ is the infinite set of all polynomials with the same
common complex roots as F . In l.8, we compute a finite reduced Gröbner basis G with
respect to ω of that radical. If radical computation is not available on the software side,
then the algorithm remains correct with a Gröbner basis of the ideal ⟨F ⟩ instead of the
radical ideal, but might miss some simplifications.

In l.9, the polynomials in G equivalently replace the left hand side polynomials of the
equations in Mk−1. In l.12, reduction with respect to ω, which comes with heuristic
elimination of variables, applies once more to the reduction results h obtained from
right hand sides g of differential equations in Tk. Since G is a Gröbner basis, the
reduction in l.11–13 furthermore produces unique normal forms with the following
property: if two polynomials g1, g2 coincide on the manifold Mk−1 defined by Mk−1,
then they reduce to the same normal form h. In particular, if g1 vanishes on Mk−1,
then it reduces to 0. We call the output of Algorithm 8 simplified reduced systems.

2.3.9 Algorithm 9: TransformBack
Algorithm 9 transforms the reduced and possibly simplified systems back to their
original time scales by applying the substitution σ, which is one output of Algorithm 1.

Our back-transformation is realized in Algorithm 9. In l.3 we compute the time scale
factor ε∗

(bk/q)+µ for T ∗
k as described above, and in l.6 we compute its co-factor ε∗

djfσ
as (xjf/yj)σ.

2.3.10 Algorithm 10: TropicalMultiReduce
Algorithm 10 provides a wrapper combining all our algorithms to decompose input
systems like (1.22) into several time scales. The underlying tropicalization is not made
explicit, and the resulting reduced systems are presented on the original time scale.
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Algorithm 10 TropicalMultiReduce
Input: 1. A list S = [ẋ1 = f1, . . . , ẋn = fn] of autonomous first-order ordinary differential

equations where f1, . . . , fn ∈ Q[x1, . . . , xn];
2. ε∗ ∈ (0, 1) ∩Q;
3. p ∈ N \ {0}

Output: A list [(M∗
0 , T

∗
1 , R

∗
1), . . . , (M∗

ℓ−1, T
∗
ℓ , R

∗
ℓ )] of triplets where ℓ ∈ {2, . . . ,m}, or the empty list.

For k ∈ {1, . . . , ℓ}, M∗
k−1 is a list of real constraints definingM∗

k−1 ⊆ Rn; T ∗
k is a list of differential

equations; R∗
k is a list of trivial differential equations ẋ = 0 for all differential variables from T ∗

k+1,
. . . , T ∗

m.
The relevance of the output in terms of the input is discussed in Section 2.3.9.

1: TropicalCS,ε∗,p := curry(TropicalC, S, ε∗, p) TropicalCS,ε∗,p is a binary function
2: TropicalDS,ε∗,p := curry(TropicalD, S, ε∗, p) TropicalDS,ε∗,p is a constant function
3: T, P, σ := ScaleAndTruncate(S,TropicalCS,ε∗,p,TropicalDS,ε∗,p, ε∗)
4: Σ := ComputeReducedSystems(T, P ) = [(M0, T1, R1), . . . , (Mℓ−1, Tℓ, Rℓ)]
5: Σ′ := SimplifyReducedSystems(Σ) = [(M ′

0, T
′
1, R1), . . . , (M ′

ℓ−1, T
′
ℓ , Rℓ)]

6: Σ∗ := TransformBack(Σ′, σ) = [(M∗
0 , T

∗
1 , R

∗
1), . . . , (M∗

ℓ−1, T
∗
ℓ , R

∗
ℓ )]

7: return Σ∗
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Chapter 3

Model-Driven Computation of
Disjunctive Normal Forms

In Chapter 2 we presented an approach to scalings of polynomial differential equations
based on tropical geometry. Algorithm 4, the corresponding algorithmic description,
makes explicit the computation of the tropical equilibration as a conjunction of dis-
junctive normal forms of quantifier-free first-order formulas over the reals. Line 23 of
Algorithm 4 then calls CDCFormToDNF, that is, Algorithm 11 to obtain a logically
equivalent disjunctive normal form (DNF) Π.

Formally, the input to Algorithm 11 is the formula

φ =
n∧
j=1

∨
P∈Bj

∧
P, (3.1)

where B1, . . . , Bn are sets and each P is a set of real constraints describing a polyhedron.
In other words, each Bj is a DNF and φ is a conjunction of DNFs.

The output of the computation is the DNF

φ′ =
∨
k

γk, (3.2)

where each γk is a conjunction of constraints that describe a polyhedron. Thus, φ′

describes a finite union of polyhedra. The relationship between input and output is
that φ and φ′ are logically equivalent.

The computation of the DNF in (3.2) is bound to be a bottleneck in many cases
and requires good heuristic strategies. An ad-hoc solution [59] based on a polyhedral
library proved to be too slow in many cases. To convey some idea of the size of possible
inputs: the text input for Redlog describing the conjunction of DNFs of the tropical
equilibration of BIOMD0000000501 with ε∗ = 1

5 and p = 1 is 102 685 bytes long and the
corresponding output describing 1665 polyhedra would take an estimated 9 MiB in
Redlog format.

In the following, we present a calculus to compute a DNF from a conjunction of
DNFs. For a less formal discussion, see [60]. Benchmarks of this algorithm against
established software are presented in Chapter 5.

The content of this chapter is as follows: Section 3.1 contains some historical
notes about the disjunctive normal form and its computation. Section 3.2 presents a
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motivating example of our approach of a model-driven computation. In Section 3.3, we
present our approach in the form of a calculus. Termination, soundness, and minimality
of the calculus are proven in Section 3.4. For the reader’s convenience, Section 3.5
contains an algorithmic description of the calculus, and Section 3.6 contains some final
remarks.

3.1 Historical Context

The disjunctive normal form received less early interest than its cousin, the conjunctive
normal form. Peirce already wrote about the canonical conjunctive normal form in
1880, albeit without naming it [78]. The name conjunctive normal form was introduced
by Bernays and published in 1926 [9, 10]. It seems that the name disjunctive normal
form (DNF) came into use by analogy.

The design of logic circuits made it necessary to simplify DNFs so that they require
as few logical operations as possible. To that end, Veitch introduced his chart [103], a
rediscovery of Marquand’s logical diagram [66]. The chart was improved by Karnaugh
in 1953 [45] and led to the Karnaugh–Veitch map. This map allows a human in a visual
process to find a minimal DNF of a given canonical DNF (CDNF). It works well for
DNFs with up to four variables and can be extended to up to six variables, yet this
already makes the visual process more difficult.

In contrast, Quine’s method [80], improved by McCluskey in 1956 [67], has no such
immediate limit on the number of variables and is well suited for implementation on
computers. For a propositional formula with α variables, it requires first to build a
complete truth table with 2α entries. From this table, prime implicants are computed,
which can also be exponential in number. Robinson’s resolution method can be used to
find prime implicants without the need for a CDNF [87]. In either case, a set cover
problem has to be solved in a second step, which is known to be NP-complete [46].

Several improvements to the Quine–McCluskey method have been published, allowing
larger problems to be solved [14, 90, 68]. Their main advantage is that they save
computation time and space by improving the size of the prime implicants table or by
only implicitly generating it [21].

While the method of Quine–McCluskey and its descendants are designed for proposi-
tional logic, Dolzmann and Sturm’s approach supports real semantics [25] and does
simplification of quantifier-free first-order formulas over ordered fields. Nevertheless, it
also requires a CDNF to work on.

Satisfiability Modulo Theories (SMT) solving [73, 72] allows to test the satisfiability
of first-order formulas. It has a multitude of applications, such as computer hardware
and software verification [11], model checking [2, 7], scheduling, theorem proving [5], and
test-case generation. SMT solving is an extension of SAT checking, which checks the
satisfiability of a propositional formula in Boolean logic and which itself is NP-complete
[20]. Even though SMT solving has the same complexity, it has become feasible in
recent years for an increasing number of problems [64]. Well-known and well-supported
SMT solvers are CVC4 [4], MathSAT [19], Yices [27], and Z3 [71], among others. Yices
was the fastest solver for QF_LRA at SMT-COMP 2017 [84].

In this chapter, we present for the first time to our knowledge, a DNF computation
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A B

C D E F G

H I J

K L M N

O P

Figure 3.1: Four intersecting rectangles

of quantifier-free first-order formulas based on SMT solving. In contrast to the methods
based on the Quine–McCluskey approach, our novel method does not need a CDNF to
begin with, nor does it compute one in its process. Furthermore, it circumvents the
exponential blow-up of conjunctions that comes with an ad-hoc approach. Of course,
it cannot avoid some NP-complete component. Since our method is based on SMT
solving, it has outsourced the NP-complete problem to the highly researched area of
SMT solving and automatically benefits from improvements there.

3.2 Motivating Example
To motivate our idea we use a geometric example. Consider Figure 3.1, which depicts
four rectangles. Each rectangle is defined by its vertices and we refer to it by them.
The orange rectangle is AKMB, the blue one is CKNG, the green rectangle is DOPE ,
and the pink one is DHJF .1 The four rectangles describe areas in 2D-space, which we
identify with point sets. The boundaries of the rectangles are included in the described
space.

We ask the following question: What is

(AKMB ∪ CKNG) ∩ (DOPE ∪ DHJF)?

Or, expressed in terms of the colors of the rectangles: What is

(orange ∪ blue) ∩ (green ∪ pink)?
1If one looks at the image closely, one can observe that some rectangles are slightly shifted. This is

only done to enhance the visual perception of the edges.
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Table 3.1: Coordinates of Points in the Motivating Example
A B C D E F G H

(0,4) (2,4) (0,3) (1,3) (2,3) (3,3) (4,3) (1,2)
I J K L M N O P

(2,2) (3,2) (0,1) (1,1) (2,1) (4,1) (1,0) (2,0)

One way to answer this is to exploit the distributivity of union and intersection. We get

(AKMB ∪ CKNG) ∩
(DOPE ∪ DHJF) = (AKMB ∩ DOPE) ∪ (AKMB ∩ DHJF) ∪

(CKNG ∩ DOPE) ∪ (CKNG ∩ DHJF)
= DLME ∪ DHIE ∪ DLME ∪ DHJF
= DLME ∪ DHIE ∪ DHJF .

(3.3)

This approach becomes impractical quickly if there are more unions with more rectangles,
since an exponential number of intersections are generated.

Our novel approach uses SMT solving. To employ SMT solving, we need to convert
the geometric representations of our rectangles into quantifier-free first-order formulas.
The named points lie on a rectangular grid with coordinates as listed in Table 3.1.
For this exposition, we identify rectangles with their describing formulas and use both
descriptions interchangeably.

We convert all geometric rectangles to formulas and express union and intersection
by logical disjunction and conjunction, respectively. This then leads to the following
formula that describes the same geometric problem as (3.3):

φ0 = ((x ≥ 0 ∧ x ≤ 2 ∧ y ≥ 1 ∧ y ≤ 4) ∨
(x ≥ 0 ∧ x ≤ 4 ∧ y ≥ 1 ∧ y ≤ 3)) ∧

((x ≥ 1 ∧ x ≤ 2 ∧ y ≥ 0 ∧ y ≤ 3) ∨
(x ≥ 1 ∧ x ≤ 3 ∧ y ≥ 2 ∧ y ≤ 3)).

(3.4)

Notice that the structure of (3.4) is a conjunction of disjunctions of conjunctions.
If this formula is satisfiable, SMT solving finds a model whose free constants (x

and y in this example) describe a point that is included in the resulting intersection
(3.3). For an unsatisfiable formula, SMT solving returns unsat. Note that in the case
of satisfiability, the found model describes a point that lies in at least one rectangle of
each union.

Let us run through our example and formula (3.4) with the help of an imaginary SMT
solver. Assume SMT solving first yields point E = (2, 3). Because E is a satisfying
point of a conjunction, it must satisfy all terms of the conjunction, which are themselves
disjunctions. For each disjunction, we look for one disjunction term that is satisfied
by E. Notice that there is always at least one such term. Since E is included in all
four rectangles, we select the terms that describe AKMB and DHJF . Next, we build
the conjunction of these two disjunction terms. This yields a conjunction of atoms,
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describing the rectangle DHIE :

γ1 = x ≥ 1 ∧ x ≤ 2 ∧ y ≥ 2 ∧ y ≤ 3. (3.5)

We have now found the description of one rectangle. In order to repeat this process,
we want to make sure to get a new point that does not satisfy this already known part
of the result. This is accomplished by adding one more conjunction that excludes the
newly found conjunction γ1 to the formula φ0. Thus, we build φ1 = φ0 ∧ ¬γ1.

This allows us to repeat the process on the new formula φ1. Assume SMT solving
on φ1 yields point F = (3, 3). F lies in rectangles CKNG and DHJF . The conjunction
of the respective disjunction terms describes the rectangle DHJF expressed by the
formula

γ2 = x ≥ 1 ∧ x ≤ 3 ∧ y ≥ 2 ∧ y ≤ 3. (3.6)

We add γ2 to the result. As we can see now, through this process we possibly find
rectangles that include some already found rectangle: DHIE ⊊ DHJF . Since we want
to avoid superfluous disjunctions, we remove DHIE , respectively γ1, from the result.
Note that this inclusion test has to be performed with each newly found rectangle
against all already found ones.

Again, we exclude the newly found rectangle via φ2 = φ1 ∧ ¬γ2 and use SMT solving
next on φ2. Assume that SMT solving returns point L = (1, 1) this time. L is contained
in AKMB, CKNG, and DOPE . Intersecting AKMB and DOPE yields DLME with
the formula

γ3 = x ≥ 1 ∧ x ≤ 2 ∧ y ≥ 1 ∧ y ≤ 3, (3.7)

and we add γ3 to the result. Inclusion checking shows that DLME does not contain
DHJF . We exclude γ3 from future searches by building φ3 = φ2 ∧ ¬γ3. Performing
SMT solving on φ3 returns unsat, so the computation is complete. The result is

φ′ = γ2 ∨ γ3

= (x ≥ 1 ∧ x ≤ 3 ∧ y ≥ 2 ∧ y ≤ 3) ∨
(x ≥ 1 ∧ x ≤ 2 ∧ y ≥ 1 ∧ y ≤ 3).

(3.8)

Converting this back to rectangles, this describes

DHJF ∪ DLME .

This result is equivalent to 3.3, since DHIE was superfluous there.
In this example, the SMT solver always yielded points on the corner of a rectangle.

This owes to the fact that in this case SMT solvers are used with the logic QF_LRA and
use the Simplex algorithm [28], which proceeds from corner to corner. Nevertheless,
any point that satisfies the formula would have done for us.

3.3 The Calculus
Now we present our method in the form of a calculus. Our calculus uses Satisfiability
Modulo Theories (SMT). The calculus’ functioning relies on the assumption that SMT
is complete in the sense that it returns either sat or unsat. Recall that we are solving
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linear real problems, where QF_LRA is the adequate SMT logic. Here, SMT solvers
typically use the Simplex method [28] and meet our requirements.

Let P be a finite set of variable-free constraints, which may however contain additional
free constants x1, . . . , xn. Recall that technically, QF_LRA establishes a partial model
where numbers, arithmetic symbols, and relations have an interpretation, but free
constants have not. If p ∈ P , then p and ¬p are called literals. Let r ∈ N, and note
that N includes 0. If ℓ1, . . . , ℓr are literals, then ℓ1 ∧ · · · ∧ ℓr is called a conjunction of
literals. If r = 0, then the empty conjunction is true. If γ1, . . . , γr are conjunctions of
literals, then γ1 ∨ · · · ∨ γr is called a disjunctive normal form (DNF). If r = 0, then the
empty DNF is false. Let D be a DNF and P the set of all constraints of D. A DNF of
D where each conjunction contains each p ∈ P exactly once, either with or without
negation, is called a canonical disjunctive normal form (CDNF). We call a conjunction
of DNFs a CDC-form. It owes its name to its structure as a conjunction of disjunctions
of conjunctions.

Let φ be a formula. A model of φ is a set of interpretations for all free constants x1,
. . . , xn such that φ holds. We then write M |= φ and say φ is satisfiable, otherwise we
say φ is unsatisfiable. Given two formulas φ and φ′ such that φ′ holds for all models of
φ, we write φ ⊩ φ′ and say φ entails φ′, otherwise we write φ ⊮ φ′. If both φ ⊩ φ′ and
φ′ ⊩ φ, we call φ and φ′ logically equivalent and write φ ≡ φ′.

A state is a 4-tuple (φ, δ, ψ, ζ), where φ is a formula, δ is a DNF, ψ is a formula or
⊥, and ζ is a DNF or ⊥. A rule transforms states. Let S1 be a state and C a condition.
We say that rule L =⇒ R if C applies if S1 syntactically matches L and semantically
satisfies C. The rule then uniquely specifies a new state S2 matching R. We then
say that a transition of S1 to S2 exists and write S1 ⊢ S2. Let r ∈ N. A sequence of
transitions of the form S0 ⊢ S1, S1 ⊢ S2, . . . , Sr−1 ⊢ Sr is called a derivation and is
written S0 ⊢∗ Sr. Note that S0 ⊢∗ S0. In other words, ⊢∗ is the reflexive-transitive
closure of ⊢.

Let I be an index set, i ∈ I, and let Ji be an index set. We rewrite (3.1) as

φ0 =
∧
i∈I

∨
j∈Ji

γi,j , (3.9)

where γi,j are conjunctions of constraints. We may limit ourselves to positive literals
here, because negation can be coded into the constraints if needed.

If the input is φ0, then the initial state of our calculus is

S0 := (φ0, false,⊥,⊥). (3.10)

An end state (φ, δend, ψ, ζ) is reached if no rules are applicable. In this case, δend is the
output.

Consider the CDC-form
φ =

∧
i∈I

∨
j∈Ji

γi,j . (3.11)

Let M be a model of φ and let i ∈ I. We define the function

S(φ,M, i) := { j ∈ Ji | M |= γi,j }. (3.12)
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Filter :
(φ, δ, ⊥, ⊥) =⇒ (φ, δ, ψ0, false)
where φ = φ0 ∧ φ∗, ψ0 = ∧

i∈I
∨
j∈S(φ0,M,i) γi,j

if φ is sat with M |= φ

Add Clause :
(φ, δ, ψ, ζ) =⇒ (φ, δ, ψ ∧ ¬γ′, ζ ∨ γ′)
where ψ = ψ0 ∧ ψ∗, ψ0 = ∧

i∈I
∨
j∈S(φ0,M,i) γi,j , γ′ = ∧

i∈I γi,S(ψ0,N,i)

if ψ ̸= ⊥, ζ ̸= ⊥, and ψ is sat with N |= ψ

Entailment :
(φ, δ, ψ, ζ) =⇒ (φ, δ, ψ, ζ ′)
where ζ = γ1 ∨ · · · ∨ γs ∨ γ′, ζ ′ = γ1 ∨ · · · ∨ γk−1 ∨ γk+1 ∨ · · · ∨ γs ∨ γ′

if ψ ̸= ⊥, ζ ̸= ⊥, and γk −→ γ′ is sat

Combine :
(φ, δ, ψ, ζ) =⇒ (φ ∧ ¬ζ, δ ∨ ζ, ⊥, ⊥)
if ψ ̸= ⊥, ζ ̸= ⊥, and ψ is unsat

Figure 3.2: The calculus

It is easy to see that S(φ,M, i) is not empty. Furthermore, we define

S(φ,M, i) := select nondeterministically one j ∈ S(φ,M, i). (3.13)

Figure 3.2 contains our calculus.

3.4 Termination and Soundness

Lemma 3.1 (Invariants of Add Clause and Entailment). Consider a derivation

S0 ⊢∗ R ⊢ R′ ⊢∗ T.

As usual, S0 = (φ0, ·, ·, ·) denotes the initial state, where φ0 is the input formula.
Furthermore, R, R′, and T are states, where R ⊢ R′ is an application of Filter and
R′ ⊢∗ T consists only of applications of Add Clause or Entailment. Let M be a
model of φ0. R′ = (·, ·, ψ0, ·), where ψ0 = ∧

i∈I
∨
j∈S(φ0,M,i) γi,j. T = (·, ·, ψ, ζ). Let N

be a model of ψ0. Then

(i) ψ0 ⊩ φ0,

(ii) S(ψ0, N, i) ⊆ S(φ0,M, i),
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(iii) ζ ⊩ ψ0,

(iv) ψ ∨ ζ ≡ ψ0.

Proof. (i) Let K be a model of ψ0, which equals ∧i∈I
∨
j∈S(φ0,M,i) γi,j . According to

(3.12), S(φ0,M, i) ⊆ Ji for all i ∈ I. It follows that ∧i∈I
∨
j∈Ji

γi,j . Hence, K is
also a model of ∧i∈I

∨
j∈Ji

γi,j , which equals φ0 according to (3.9).

(ii) Recall that ψ0 = ∧
i∈I

∨
j∈S(φ0,M,i) γi,j . Let i ∈ I, and let ℓ ∈ S(ψ0, N, i). That

is, according to (3.12), ℓ ∈ { j ∈ S(φ0,M, i) | N |= γi,j }. Hence, ℓ ∈ S(φ0,M, i).

(iii) We perform induction on the number n ∈ N of derivation steps. Consider a
derivation S0 ⊢∗ R ⊢ R′ ⊢n Tn, where Tn = (·, ·, ψn, ζn). We show ζn ⊩ ψ0.
Recall that R ⊢ R′ is the last application of Filter. For n = 0, T0 equals R′.
According to Filter, ζ0 = false. Hence, ψ0 follows trivially.
Assume that ζn ⊩ ψ0 for n ∈ N. Consider R ⊢ R′ ⊢n+1 Tn+1, say R ⊢ R′ ⊢n Tn ⊢
Tn+1, where Tn+1 = (·, ·, ψn+1, ζn+1). We show the induction step ζn+1 ⊩ ψ0 by
case distinction on the rule, Add Clause or Entailment, applied in Tn ⊢ Tn+1.
Consider the case that Tn ⊢ Tn+1 is an application of Add Clause. According
to that rule, ζn+1 = ζn∨γ′. Let K be a model of ζn+1. Since ζn+1 is variable-free,
it follows that K is a model of ζn, or of γ′, or of both. If K is a model of
ζn, then it follows by the induction hypothesis that K is a model of ψ0. If K
is not a model of ζn, then K is a model of γ′. Examination of Add Clause
shows that γ′ = ∧

i∈I γi,S(ψ0,N,i). According to (3.13) and (ii), it follows that
S(ψ0, N, i) ∈ S(ψ0, N, i) ⊆ S(φ0,M, i) for all i ∈ I. Thus, K is also a model of∧
i∈I

∨
j∈S(φ0,M,i)γi,j , which equals ψ0. Hence, ζn+1 ⊩ ψ0.

Finally, consider the case that Tn ⊢ Tn+1 is an application of Entailment. By
the induction hypothesis, ζn ⊩ ψ0. According to Entailment, ζn has the form
γ1 ∨ · · · ∨ γs ∨ γ′. Furthermore, there exists k ∈ {1, . . . , s} such that γk −→ γ′ is
sat. Thus, ζn ≡ γ1 ∨ · · · ∨ γk−1 ∨ γk+1 ∨ · · · ∨ γs ∨ γ′, which equals ζn+1. Hence,
ζn+1 ⊩ ψ0.

(iv) We perform induction on the number n ∈ N of derivation steps. Consider a
derivation S0 ⊢∗ R ⊢ R′ ⊢n Tn, where Tn = (·, ·, ψ∗

n, ζn). We show ψ∗
n ∨ ζn ≡ ψ0.

Recall that R ⊢ R′ is the last application of Filter. For n = 0, T0 equals R′.
According to Filter, ψ∗

0 = ψ0 and ζ0 = false. Hence, ψ∗
0 ∨ ζ0 = ψ0 ∨ false ≡ ψ0.

Assume that ψ∗
n ∨ ζn ≡ ψ0 for n ∈ N. Consider R ⊢ R′ ⊢n+1 Tn+1, say R ⊢

R′ ⊢n Tn ⊢ Tn+1, where Tn+1 = (·, ·, ψn+1, ζn+1). We show the induction step
ψ∗
n+1 ∨ ζn+1 ≡ ψ0 by case distinction on the rule applied in Tn ⊢ Tn+1.

Consider the case that Tn ⊢ Tn+1 is an application of Add Clause. According
to that rule, ψ∗

n+1 = ψ∗
n ∧ ¬γ′ and ζn+1 = ζn ∨ γ′. Thus,

ψ∗
n+1 ∨ ζn+1 = (ψ∗

n ∧ ¬γ′) ∨ (ζn ∨ γ′)
≡ (ψ∗

n ∨ ζn ∨ γ′) ∧ (¬γ′ ∨ ζn ∨ γ′)
≡ ψ∗

n ∨ ζn ∨ γ′.
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By the induction hypothesis, ψ∗
n ∨ ζn ≡ ψ0. Therefore and by idempotency,

ψ∗
n ∨ ζn ∨ γ′ ≡ ψ0 ∨ ζn ∨ γ′ ≡ ψ0 ∨ ζn+1. According to (iii), ζn+1 ⊩ ψ0. Hence,

ψ0 ∨ ζn+1 ≡ ψ0.
Finally, consider the case that Tn ⊢ Tn+1 is an application of Entailment.
According to that rule, ψ∗

n+1 = ψ∗
n. Also, ζn has the form γ1 ∨ · · · ∨ γs ∨ γ′.

Furthermore, there exists a k ∈ {1, . . . , s} such that γk −→ γ′ is sat. Thus,
ζn ≡ γ1 ∨ · · · ∨ γk−1 ∨ γk+1 ∨ · · · ∨ γs ∨ γ′, which equals ζn+1. It follows that
ψ∗
n+1 ∨ ζn+1 ≡ ψ∗

n ∨ ζn. Hence, by the induction hypothesis, ψ∗
n+1 ∨ ζn+1 ≡ ψ0.

Proposition 3.1 (Invariant of the calculus). Consider a derivation S0 ⊢∗ T . As usual,
S0 = (φ0, false, ·, ·) is the initial state, where φ0 is the input formula. T = (φ, δ, ·, ·) is
a state. Then

φ ∨ δ ≡ φ0.

Proof. We perform induction on the number n ∈ N of derivation steps. Consider a
derivation S0 ⊢n Tn, where Tn = (φ∗

n, δn, ψ
∗
n, ζn). We show φ∗

n ∨ δn ≡ φ0.
For n = 0, T0 equals the initial state S0 = (φ0, false, ·, ·). Thus, φ∗

0 = φ0 and
δ0 = false. Hence, φ∗

0 ∨ δ0 = φ0 ∨ false ≡ φ0.
Assume that φ∗

n ∨ δn ≡ φ0 for n ∈ N. Consider the derivation S0 ⊢n+1 Tn+1, say
S0 ⊢n Tn ⊢ Tn+1. We show the induction step φ∗

n+1 ∨ δn+1 ≡ φ0 by case distinction on
the rule applied in Tn ⊢ Tn+1.

Consider the case that Tn ⊢ Tn+1 is an application of Filter, Add Clause, or
Entailment. Inspection of these rules shows that φ∗

n+1 = φ∗
n and δn+1 = δn. Hence,

the induction step follows trivially.
Finally, consider the case that Tn ⊢ Tn+1 is an application of Combine. It is easy

to see that Filter has been applied before at least once. Rewrite the derivation as
S0 ⊢∗ R ⊢ R′ ⊢∗ Tn ⊢ Tn+1, where R and R′ = (·, ·, ψ0, ·) are states such that R ⊢ R′ is
an application of Filter and R′ ⊢∗ Tn contains no application of Filter. According
to Combine, we have

φ∗
n+1 ∨ δn+1 = (φ∗

n ∧ ¬ζn) ∨ (δn ∨ ζn)
≡ (φ∗

n ∨ δn ∨ ζn) ∧ (¬ζn ∨ δn ∨ ζn)
≡ φ∗

n ∨ δn ∨ ζn.

By the induction hypothesis, φ∗
n ∨ δn ∨ ζn ≡ φ0 ∨ ζn. It is easy to see that R′ ⊢∗ Tn

consists only of applications of Add Clause or Entailment. Thus, Lemma 3.1
applies. By Lemma 3.1 (iv), ψ∗

n ∨ ζn ≡ ψ0. By the condition of Combine, ψ∗
n is unsat.

Therefore, ψ∗
n ≡ false. It follows that ζn ≡ ψ0. Thus, φ0 ∨ ζn ≡ φ0 ∨ ψ0. Hence, by

Lemma 3.1 (i) we obtain φ0 ∨ ψ0 ≡ φ0.

If desired, one can ensure the minimality of the resulting DNF in the sense that no
conjunction can be removed from the DNF without changing its truth value.

Let V = (·, δ, ·, ·) be a state such that δ = ∨p
k=1 γk. Consider a finite derivation

S0 ⊢∗ V . Let ℓ, m ∈ N such that ℓ ̸= m. Obviously, minimality can be ensured by
evaluating all γℓ ⊩ γm and removing γℓ if entailment holds. In the worst case, this
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requires O(p2) entailment tests, where p is the maximum number of conjunctions at
any stage of the computation.

If Entailment is applied, our calculus checks only conjunctions that result from
the same Filter rule against one another, resulting in O(q2) entailment tests, where q
is the maximum number of conjunctions after Add Clause. Even though complexity
is still O(p2), this can drastically reduce the constant inside the O.

Proposition 3.2 (Minimality). Consider a derivation S0 ⊢∗ V , where Entailment
is applied whenever applicable. As usual, S0 denotes the initial state. Furthermore,
V = (·, δ, ·, ·) is a state. δ is a DNF and has the form

∨
k γk. Let ℓ, m ∈ N such that

ℓ ̸= m. Then
γℓ ⊮ γm.

Proof. Let k ∈ N. It is easy to see that all γk are added to δ in Combine. Furthermore,
it is easy to see that each application of Combine is preceded by a matching application
of Filter. Moreover, immediately after Filter the only applicable rule is Combine.
Let h ∈ N. Rewrite the derivation as

S0 ⊢ R1 ⊢ R′
1 ⊢∗ U1 ⊢ R2 ⊢ R′

2 ⊢∗ U2 ⊢ · · · ⊢ Rh ⊢∗ V.

Let r, s ∈ N \ {0}. Rr = (φ∗
r , ·, ·, ·), R′

r, and Ur = (·, ·, ·, ζr) are states, where Rr ⊢ R′
r

is the r-th application of Filter, Ur ⊢ Rr+1 is the r-th application of Combine,
and Rh ⊢∗ V contains no application of Filter. We may assume that r has been
chosen such that γℓ is contained in ζr and s such that γm is contained in ζs. That is,
for r1, r2, s1, s2 ∈ N, ζr has the form γr1 ∨ · · · ∨ γℓ ∨ · · · ∨ γr2 , and ζs has the form
γs1 ∨ · · · ∨ γm ∨ · · · ∨ γs2 . Let Mr be a model of φ∗

r .
Firstly, consider the case that r = s. Consider the subcase that ℓ < m. As stated in

the Proposition, Entailment has been applied whenever applicable. Hence, γℓ ⊮ γm.
Consider the alternate subcase that ℓ > m. Consider the derivation R′

r ⊢∗ Tm ⊢
T ′
m ⊢∗ Tℓ ⊢ T ′

ℓ ⊢∗ Ur, where Tm = (·, ·, χm, ·), T ′
m = (·, ·, χ′

m, ·), Tℓ = (·, ·, χℓ, ·), and
T ′
ℓ are states such that Tm ⊢ T ′

m and Tℓ ⊢ T ′
ℓ are applications of Add Clause that

yield γm and γℓ, respectively. Let Nℓ be a model of χℓ. Inspection of Add Clause
shows that Nℓ |= γℓ. According to Add Clause, χ′

m = χm ∧ ¬γm. Since ℓ > m, ¬γm
is contained in the conjunction χℓ. Thus, Nℓ ̸|= γm. Hence, γℓ ⊮ γm.

Secondly, consider the case that r < s. It is not hard to see that Mr |= γℓ and thus
Mr |= ζr. According to Combine, we have φ∗

r+1 = φ∗
r ∧ ¬ζr. Since s > r, it follows

that Mr ̸|= φ∗
s. Thus, Mr ̸|= ζs and consequently, Mr ̸|= γm. Hence, γℓ ⊮ γm.

Thirdly, consider the case that r > s. We prove this by contradiction. Assume
γℓ ⊩ γm. It is easy to see that Mr |= γℓ. It follows from the assumption that also
Mr |= γm, and thus Mr |= ζs and Mr |= φ∗

s. Since φ∗
s+1 = φ∗

s ∧ ¬ζs and r > s, it follows
that Mr ̸|= ζs, which is a contradiction. Hence, γℓ ⊮ γm.

Theorem 3.1 (Termination). The calculus terminates. In other words, there are no
infinite derivations S0 ⊢ S1 ⊢ . . .

Proof. Let T = (φ, δ, ψ, ζ) be a state, where φ is a formula. Let P be the set of all
constraints of φ and let α = |P |, the number of constraints. Recall that there is exactly
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one CDNF for φ modulo reordering of literals [48, p. 52–53] and that it consists of at
most 2α conjunctions.

Let “≺” be lexicographically strictly less on N3. A weight (a, b, c) ∈ N3 is assigned
to T as follows:

• a is the number of conjunctions of the CDNF of φ that are satisfiable;

• b is 2α + 1 if ψ = ⊥, otherwise the number of conjunctions of the CDNF of ψ
that are satisfiable;

• c is 0 if ζ = ⊥, otherwise the word length of ζ.

Let S = (φ, δ, ψ, ζ) and S′ = (φ′, δ′, ψ′, ζ ′) be states. Consider a transition S ⊢ S′.
Let (a, b, c) and (a′, b′, c′) be the weights for S and S′, respectively.

Filter yields a′ = a, b′ < b, and c′ > c. We have a′ = a, since φ′ = φ. It holds that
b′ < b, since ψ′ ̸= ⊥ and thus b′ ≤ 2α, whereas ψ = ⊥ and thus b = 2α + 1. c′ > c, since
ζ ′ = false and thus c′ = 1, whereas ζ = ⊥ and thus c = 0.

Add Clause yields a′ = a, b′ < b, and c′ > c. Then a′ = a, since φ′ = φ.
Furthermore, we have b′ < b. ψ is satisfied according to the condition of the rule.
According to (3.13), γ′ is also satisfied. Thus, the CDNF of ψ ∧ ¬γ′ has at least one
satisfiable conjunction less than the CDNF of ψ. Lastly, c′ > c, since the word length
of ζ ′ is greater than that of ζ.

Entailment yields a′ = a, b′ = b, and c′ < c, since φ′ = φ and ψ′ = ψ, and the
word length of ζ ′ is less than that of ζ.

Combine yields a′ < a, b′ > b, c′ < c. It is easy to see that ζ consists of at least one
satisfiable conjunction. Thus and by Lemma 3.1 (i) & (iii), a′ < a, since the CDNF of
φ ∧ ¬ζ has at least one satisfiable conjunction less than the CDNF of φ. Furthermore,
b′ > b, since ψ′ = ⊥ and ψ ̸= ⊥, and thus b′ = 2α + 1 and b ≤ 2α. Lastly, c′ < c, since
ζ ′ = ⊥ and ζ ̸= ⊥, and thus c′ = 0 and c > 0.

Hence, S ⊢ S′ implies (a′, b′, c′) ≺ (a, b, c). Since “≺” is well-founded, every derivation
terminates.

Theorem 3.2 (Soundness). The calculus is sound. In other words, let φ0 be an input
CDC-form and let δend be an output DNF. Consider a terminating derivation S0 ⊢∗ T ,
where S0 = (φ0, ·, ·, ·) is the initial state and T = (·, δend, ·, ·) is a terminating state.
Then φ0 ≡ δend.

Proof. Let U = (φ, δ, ·, ·) be a state. According to Proposition 3.1 it holds that
φ ∨ δ ≡ φ0. It is easy to see that this holds especially for a terminating state, where
φ ≡ false and δ = δend. Hence, φ0 ≡ δend.

3.5 The Calculus as an Algorithm

By courtesy to the reader, we present the calculus of the last section in the form of two
algorithms. We chose the presentation as two algorithms, where one is the sole caller of
the other, since this is not only advantageous for implementation, but also allows us to
point out the similarities as well as the differences of the two procedures.
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Algorithm 11 CDCFormToDNF
Input: A CDC-form φ0 =

∧n

i=1

∨mi

j=1 γi,j , where γi,j are conjunctions of quantifier-free first-order
formulas over the reals.

Output: A DNF δend with δend ≡ φ0.
The DNF δend is minimal in the sense that no conjunction can be left out without violating
δend ≡ ψ0.

1: δ := false
2: φ := φ0
3: while M |= φ do
4: ψ0 :=

∧n

i=1

∨mi

j=1{ γi,j |M |= γi,j }
5: ζ := CDCFormToDNFSub(ψ0)
6: δ := δ ∨ ζ
7: φ := φ ∧ ¬ζ
8: end while
9: return δ

3.5.1 Algorithm 11: CDCFormToDNF

The main algorithm to be called is Algorithm 11. It is called in Algorithm 4 to return
the DNF Π.

Line 1 of Algorithm 11 initializes δ, the eventual DNF to be returned, to false, and
l.2 sets φ to the input CDC-form φ0. The while-loop in l.3–8 proceeds as long as
there exists a model M that satisfies φ. This constitutes the condition of the Filter
rule, where l.4 contains the body. Add Clause and Entailment are outsourced to a
separate algorithm in l.5. The returned DNF ζ is disjunctively added to the DNF δ
and its negation conjunctively added to φ to exclude further models that satisfy ζ in
l.6–7. These two lines constitute the Combine rule. Finally, l.9 returns the DNF δ.

3.5.2 Algorithm 12: CDCFormToDNFSub

Algorithm 11 calls function CDCFormToDNFSub to perform the Add Clause and
Entailment rules of the calculus. Whereas the calculus allows Entailment but does
not enforce it, Algorithm 12 always employs Entailment.

Algorithm 12 accepts a CDC-form and returns a DNF, as does its calling Algorithm 11.
In l.1–2 the DNF ζ and the formula ψ are initialized to false and ψ0, respectively. The
while-loop in l.3–21 is executed as long as ψ is satisfiable. Line 4 and the nested
for-loops in l.5–12 construct γ′ as in the Add Clause rule. Lines 13–18 contain the
body of the Entailment rule and l.19–20 the body of the Combine rule. After ψ is
unsat, the while-loop is left and in l.22 the DNF ζ is returned.

Notice that Algorithm 12 has the same semantics as Algorithm 11 in the sense that
it takes the same type of arguments and returns the same type of return value with
the same property. The noteworthy difference between the two is that Algorithm 12
checks the Entailment rule. In the process, it checks a newly found DNF conjunction
(l.4–12) for entailment against all conjunctions found before (l.13–18). In contrast to
this, Algorithm 11 does not need to check for entailment, since this cannot happen by
design. See Proposition 3.2 for a proof.
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Algorithm 12 CDCFormToDNFSub
Input: A CDC-form ψ0 =

∧n

i=1

∨mi

j=1 γi,j , where γi,j are conjunctions of quantifier-free first-order
formulas over the reals.

Output: A DNF ζ with ζ ≡ ψ0.
1: ζ := false
2: ψ := ψ0
3: while N |= ψ do
4: γ′ := true
5: for i := 1 to n do
6: for j := 1 to mi do
7: if N |= γi,j then
8: γ′ := γ′ ∧ γi,j

9: break
10: end if
11: end for
12: end for
13: ζ′ := false
14: for all conjunctions γ in ζ do
15: if R ̸|= γ −→ γ′ then
16: ζ′ := ζ′ ∨ γ
17: end if
18: end for
19: ζ := ζ′ ∨ γ′

20: ψ := ψ ∧ ¬γ′

21: end while
22: return ζ

3.6 Remarks

1. The calculus is described using the SMT logic QF_LRA. It can be straightforwardly
adapted to other complete theories T . “Complete” is used in the sense that
for every sentence φ either T |= φ or T |= ¬φ. Recall that the SMT solver
implementation for the corresponding theory has to be complete as well, in the
sense that for every formula it returns either sat or unsat, but not unknown.

Beyond SMT solving, the calculus is compatible with any decision procedure
that produces a witness in the positive case. Examples are the theory of real
closed fields, corresponding to the SMT logic QF_NRA; Presburger arithmetic [79],
corresponding to the SMT logic QF_LIA; or the linear theory of p-adic numbers
for a fixed prime p. For real closed fields, one can use cylindrical algebraic
decomposition [3] as a decision procedure with the test point of a satisfying cell
as the witness. For the other theories mentioned above one can use extended
quantifier elimination by virtual substitution [50] for the weak linear theory of the
integers [53] and for the linear theory of discretely valued fields [101], respectively.

2. Recall that rule Add Clause adds conjunctions γ′ = ∧
i∈I γi,S(ψ0,N,i) to the DNF,

as per the calculus. So far, we make no effort to minimize these conjunctions
in the sense as to remove redundant terms γk from γ′. Take as an example
the rectangles from Section 3.2. SMT solving first found point E and we chose
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rectangles AKMB and DHJF . This leads to the following conjunction:

x ≥ 0 ∧ x ≤ 2 ∧ y ≥ 1 ∧ y ≤ 4 ∧ x ≥ 1 ∧ x ≤ 3 ∧ y ≥ 2 ∧ y ≤ 3. (3.14)

It is easy to see that half of the constraints are superfluous. If we somehow
drop the superfluous ones, we get the minimal result (3.5). Such a minimization
could be formulated quite straightforwardly with a rule similar to Entailment,
which we only sketch here: Given γ′ = γ1 ∧ · · · ∧ γs ∧ γ′′ one can replace γ′

with γ1 ∧ · · · ∧ γk−1 ∧ γk+1 ∧ · · · ∧ γs ∧ γ′′ provided that γ′′ −→ γk is sat. We
call this the Small Entailment rule. It is noteworthy that δ never contains
constraints that are logically equivalent to false, such as x2 < 0, even without
Small Entailment. In contrast, constraints that are logically equivalent to
true, such as x2 ≥ 0, may be contained in δ, but would be removed by a Small
Entailment rule.

3. Notice that Algorithm 11 is an anytime algorithm [109]. That is, the longer it runs,
the more its output approximates the real result. Even if the full computation of
the result for some input φ0 might not be feasible, at least parts of the result can
be computed. If the while-loop in l.3–8 of Algorithm 11 is prematurely broken
out of, any result δ satisfies δ ⊩ φ0, while only the full result also satisfies φ0 ⊩ δ
and thus δ ≡ φ0.

4. If Algorithm 11 is implemented with the help of an actual SMT solver, this
solver can be used in incremental mode. This is possible whenever one wants to
conjunctively add further conditions to a formula being solved after the solver
has found a model. This is exactly what happens in l.7 of Algorithm 11 and l.20
of Algorithm 12. If these loops cycle many times, the reduction in run-time can
be quite substantial.

5. Minimality can be ensured by applying rule Entailment whenever applicable.
However, this can cause a quadratic run-time in the number of DNF terms. As of
now, the calculus is broken up into two parts where one consists of Filter and
Combine and the other of Add Clause and Entailment. Filter creates from
φ the CDC-form ψ0, which contains only those conjunctions that are modeled
by some M , where M |= φ. A possible enhancement would be to repeat this
filtering multiple times until the number of possible combinations, and therefore
the maximum number of disjunction terms, is below a constant threshold. If
it could be proven that this leads to only a logarithmic depth, time needed to
ensure minimality could be reduced from O(p2) to O(p log p).
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Chapter 4

ODEbase: A Repository of ODE
Systems for Systems Biology

One advantage of symbolic computation is its potential to provide qualitative answers
to biological questions. Qualitative methods analyze dynamical input systems as
formal objects, in contrast to investigating only part of the state space, as is the case
with numerical simulation. However, symbolic computation tools and libraries have
a different set of requirements for their input data than their numerical counterparts.
A common format used in mathematical modeling of biological processes is SBML.
We point out that the use of SBML data in symbolic computation requires significant
pre-processing, incorporating external biological and mathematical expertise. ODEbase
provides high quality symbolic computation input data derived from established existing
biomodels, covering in particular the BioModels database. We make use of ODEbase in
Chapter 5, where we use it to provide data sets for our benchmarks. This chapter was
previously published in [61].

4.1 Introduction

Recently, symbolic computation methods are playing an increasing role in systems
biology and mathematical biology [12, and the references there]. Problems investigated
using such methods include Hopf bifurcations, multi-stationarity, multi-scale model
reduction, dynamical invariants, and structural properties of steady state varieties; for
details see, e.g., [29, 36, 23, 13, 51, 35]. The biological systems investigated so far were
focused on reaction networks in the sense of chemical reaction network theory [30].
Such networks are usually stored and exchanged in Systems Biology Markup Language
(SBML), a free, open, and standardized XML-based format [41].

On the one hand, symbolic computation does not utilize the full information contained
in SBML models. For instance, SBML was designed with a focus on network simulation
and supports corresponding concepts like events and initial assignments, which are not
natural from a formal symbolic computation point of view. On the other hand, symbolic
computation operates on formal objects, which are not readily available in SBML. One
prominent class of examples are ODEs describing differential network kinetics along
with algebraic constraints, such as conservation laws. The genuine difference between
dynamic simulation and static formal analysis requires sensitivity to details and rigor
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in the course of the construction of symbolic computation input from available SBML
descriptions. It is noteworthy that existing SBML parsers generate input for numerical
simulation, which is not suited for symbolic computation. MathSBML [99], SBFC [88],
SBMLtoODEpy [91], and SBML2Modelica [63] fall into this category.

The rigorous construction of symbolic computation input poses some substantial
problems. Solving, or even recognizing, such problems, requires joint competence and
combined efforts not only from biology, but also from mathematics and computer
science. We note some examples for such problems:

• SBML allows floating-point values for various entities. However, floating-point
values exhibit representation errors and computations are prone to rounding
errors. This is inadequate for symbolic computation, where exact computations
are performed.

• SBML has liberal naming conventions for species and parameters that interfere
with the typically strict rules of symbolic computation software, which are ori-
ented towards mathematical notation. If different users of symbolic computation
software rename those identifiers at their own discretion, it becomes difficult to
compare their results.

• SBML gives modelers versatile opportunities of expression, such as local param-
eters, function definitions, rules, and initial assignments. For practical reasons,
scientific software does not generally support the full SBML feature set. This
leads to incompletely imported models or it prohibits their import entirely.

• Symbolic computation is concerned with mathematical properties like deficiency
and linear conservation laws, which are available in SBML only implicitly through
computation. Explicit availability is desirable, especially, since some of those
computations can become surprisingly time-consuming.

With this in mind, the question is now how to make the abundantly available SBML
data accessible for the symbolic computation community in a suitably prepared form.

A natural idea would be to integrate symbolic computation input into the SBML
format. However, there are obstacles on both sides: On the symbolic computation side,
established software is usually general-purpose, and systems biology is not yet firmly
established in the community. Therefore, widespread support of SBML as an input
format for symbolic computation software cannot be expected in the near future. On the
systems biology side, the SBML standard would need to be extended. Standardization
generally requires considerable efforts, and it seems unlikely that this will be pursued
before the links between symbolic computation and systems biology have been further
strengthened.

The interdisciplinary project SYMBIONT brings together researchers from mathemat-
ics, computer science, and systems biology [12]. Within SYMBIONT, we have started
the online database ODEbase, which collects symbolic computation input for existing
SBML models. All models have been carefully constructed taking into consideration
the issues discussed above. At the time of writing, all our models originate from the
BioModels database [77], the world’s largest repository of curated mathematical models
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of biological processes and one of the most important data sources for modeling [65].
Out of the 1044 models from the curated branch of BioModels, we have currently
compiled 662 into ODEbase.

As ODEbase has turned out to be extremely valuable throughout the SYMBIONT
project, we now make it available to the community under https://odebase.org as
a free and open database, beyond the lifespan of the project. ODEbase has already
been used as data source in a number of papers [35, 83, 44]. If models require updates,
revised versions will be made available, keeping all previous versions for reference. Data
can be extracted in LATEX, Maple, Reduce, and SageMath format. We are open to
supporting further formats in the future.

ODEbase provides a canonical source of symbolic computation input related to
existing models of biological processes. This has a number of advantages:

1. Interdisciplinary competence: The derivation of adequate ODEs for the kinetics
of existing biomodels requires the incorporation of external biological and math-
ematical expertise. We have accomplished this task for a large set of available
models and make the results available to the community.

2. Economic use of human resources: Symbolic computation input has been pre-
computed and is directly available.

3. Availability: ODEbase models used and cited in the literature can be conveniently
reviewed on the basis of the original data and re-used in follow-up publications.

4. Canonical reference: ODEbase fixes choices for the inevitable renaming of species
and parameters to common mathematical notation. This facilitates comparability
of results.

5. Benchmarking: Beyond its primary purpose, ODEbase is perfectly suited to
generate benchmark sets for novel algorithms and software in the field.

4.2 Details

4.2.1 The Content of ODEbase Data Sets

For each model in ODEbase, the following data set is computed from the original SBML
input:

Stoichiometric and kinetic matrices. Stoichiometric and kinetic matrices are
made explicit. In that course, floating-point values in the SBML input are converted to
exact rational numbers.

ODEs for species concentrations. These are explicit first-order, nonlinear ODEs
that are often, but not necessarily, autonomous. Species are named x1, . . . , xn, following
common mathematical notation. The ODEs are created from the stoichiometric matrix
and the relevant kinetic laws. Again, floating-point values are converted to exact
rational numbers. We have taken care to preserve the structure of mathematical terms

59

https://odebase.org


Chapter 4 ODEbase: A Repository of ODE Systems for Systems Biology

by using abstract syntax trees as an intermediate format. One visible effect of this are
uncanceled rational functions and the presence of stoichiometric coefficients of 1 or −1.
If species rate rules are present in the model, the corresponding ODEs are included as
well.

Parameter values. Our naming of parameters also follows common mathematical
notation, viz., k1, . . . , km. Parameter values are converted from floating-point represen-
tation to exact rational numbers. If there are initial assignments or assignment rules
in the SBML model, they are applied in the proper order to calculate the parameter
values. To avoid any representation errors, all values are queried as text from the XML
source.

Map between ODEbase names and original model names. A bijective mapping
between the mathematical names for species and parameters and their respective SBML
names is provided.

Constraints. All SBML species assignment rules are converted to formal constraints.
Furthermore, linear conservation constraints are computed from the stoichiometric
matrix using an algorithm by Schuster and Höfer [98], extended to handle multiple
model compartments. All constraints introduced in this way can be combined with the
ODEs mentioned above which yields the relevant ODE system for the model.

Deficiency. The deficiency of the reaction network is computed from its complexes.
This is a measure of how independent the reaction vectors are, given the network’s
linkage class structure [30, Sect. 6.3].

Classification. Polynomials and, more generally, rational functions play a crucial
role in symbolic computation. We classify whether ODE vector fields and constraints
are covered by such expressions. In the polynomial case, we furthermore check if the
SBML-specified kinetics differs from the regular mass action kinetics [30, Sect. 2.1.2]
only by a constant factor. This is a conservative heuristic for identifying models with
mass action kinetics.

4.2.2 Supported SBML Features

All models in ODEbase are a faithful conversion from the respective SBML model.
SBML features recognized during the conservation process include the following:

• species with boundary condition,

• local parameters,

• parameter and species assignment rules,

• parameter and species initial assignments,

• species rate rules,

60



4.2 Details

• function definitions.

SBML supports events, i.e., discrete model changes at certain points in time, and
furthermore it supports parameter rate rules. Models that contain either of those
are currently not included in ODEbase. Neither are models with irrational parameter
values.

4.2.3 The ODEbase Web Service

The website at https://odebase.org is a free and open service, where the user can
filter and search for models to display or download them. The website uses the
responsive front-end framework Bootstrap [100] and is easy to view and navigate on
both desktop and mobile computers.

The website constains a top navbar with the following options:

• “Home”, the main page with information about the operators of the website;

• “Database”, where models can be accessed;

• “References”, a list of scientific publications that utilize ODEbase;

• “Privacy Policy”, the data protection declaration, which is required by law.

The table of models is reached by clicking “database” in the navbar. Once there,
on the left of the table is a sidebar, where the user can refine which models should be
displayed. This can be done by entering explicit numerical values or ranges for several
biomathematical properties of a model, namely, the number of species, the number
of parameters, the number of constraints, and the deficiency. Furthermore, there are
inputs that accept 3-valued logic with the values “Yes”, “No”, and “Don’t care” to select
for rational functions, polynomials, and systems with mass action kinetics. Figure 4.1
shows a screenshot of the table without any selection.

By clicking on the model identifier, the user gets a detailed view of the respective
model. Here, the model’s properties are displayed, which are the number of total,
reversible, and one-way reactions, in addition to the properties available through the
filter sidebar. Furthermore, the following mathematical objects can be downloaded:
stoichiometric matrix, kinematic matrix, ODEs, constraints, and parameter values.
Each of these data can be downloaded in either LATEX, Maple, Reduce, or SageMath
format.

A mapping between ODEbase names for species and parameters and SBML names
can be downloaded as well. Additionally, a link to the original model in the BioModels
database and possible links to known research about each model are displayed here.
Figure 4.2 shows a sample details page.

Lastly, multiple models can be selected by clicking a checkbox in front of the model
name. Thereafter, the user can click on “Download selected” and select which of the
aforementioned mathematical objects in which formats are desired to download. When
started, a .zip file is created for download so that the user gets everything bundled into
one file. See Figure 4.3 for a screenshot.
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Figure 4.1: ODEbase table of models
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Figure 4.2: ODEbase detail page for BIOMD0000000026
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Figure 4.3: ODEbase download page for multiple models
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Chapter 5

Benchmarks

In Chapter 2, we presented an algorithmic approach to partition ODE systems into
multiple time scales. Part of this approach is Algorithm 4, which computes the tropical
equilibration of a system of polynomials. The algorithm builds a CDC-form of quantifier-
free first-order formulas over the reals. Recall that a CDC-form is a conjunction of
disjunctions of conjunctions.

In principle, one could compute a DNF from such a CDC-form by repeated application
of the distributive law. This creates a formula with the theoretical maximum number
of combinations of conjunctions. In the following, we simply call this the number of
combinations. Since run-time and memory consumption grow exponentially with the
number of equations, it is infeasible for many systems to proceed in this way. To
compute a DNF from a CDC-form in a more efficient way, we presented Algorithm 11
in Chapter 3. This algorithm is then called in l.23 of Algorithm 4.

ODEbase was introduced in Chapter 4. One of the purposes of ODEbase is to provide
real-world examples of ODE systems for benchmarking. We use it now as a source for
realistic input data for our benchmarks.

In Section 5.1, we investigate the run-times of SMTcut, a software prototype of
Algorithm 11, and compare them with existing software. Section 5.2 contains a
comparison of the run-times of SMTcut with a software prototype by Samal [92]. Lastly,
Section 5.3 contains a short account of the run-times of the reduction process of
Algorithms 1 and Algorithms 5–7.

5.1 Comparison of SMTcut and Redlog

We compare the speed of Algorithm 11 to established software, that is, Redlog [24],
which is available in the computer algebra system Reduce [38]. No other system could
be found that supports first-order formulas over the reals and exploits the structure of
ordered fields. If such structure is supported, then, for example, x < 0 ∧ x > 0 ≡ false
and x ≤ 0 ∧ x ≥ 0 ≡ x = 0. Without such support, a resulting DNF contains many
conjunctions that are logically equivalent to false and thus the result is much too long.
This can quickly reach a point where computation becomes infeasible.

There are some obstacles to the successful computation of a tropical equilibration.
For one, polynomials must not be zero. This might however be the case in models with
species that have a boundary condition, where ODEs have the form dxi

dt = 0. Then
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there is the case where the stoichiometry of a species is zero and the corresponding
ODE right hand side is zero as well. Also, polynomials may become zero due to zero
parameters. Lastly, tropicalization requires at least one monomial for both, positive
and negative signs. If only one of these types of monomials is present, it is called
an unbalanced monomial and tropicalization can not be performed. If any of these
obstacles occur, tropicalization is not possible.

For our benchmark, we first performed tropicalization with ε∗ = 1
5 and p = 1. This

part is not part of the benchmark and was done with SMTcut. The output of this
computation, which describes a CDC-form, was saved to be used later in the benchmarks
of Redlog and SMTcut.

The machine used for benchmarks is running Ubuntu Linux 20.04.3 in 64-bit mode
with kernel version 5.13.0. It has a 2.9 GHz Intel i5-9400 CPU with 6 cores and 32 GiB
of memory. Benchmarks were run in parallel on all cores. Run-time was limited to
2 hours per instance by using the “timeout 7200s” command. Memory was limited
to 4 GiB of memory per program instance and this was conveyed to the software by
parameters. All listed computation times are CPU times.

The SMTcut Setup. We used SMTcut 6.1.0 for these benchmarks. SMTcut is written
in Python and uses PySMT [33] as a solver-agnostic interface to the actual SMT solver.
SMTcut was run on Python 3.8.10 with PySMT 0.9.0, gmpy2 2.0.8, and SymPy 1.7.1
[69]. As solvers were used: CVC4 1.7-prerelease [4], MathSAT 5.6.5 [19], Yices 2.6.2
[27], and Z3 4.8.7 [71].

The Redlog Setup. Redlog benchmarks were run with CSL Reduce revision 6110,
dated “19-Oct-2021” and Redlog revision 6088 dated “2021-10-08, 16:03:01Z”. The
memory limit was communicated to Reduce through the “–maxmem 4096” option. Times
in Reduce were measured with the built-in showtime command, which returns the time
needed for the execution of the algorithm and additionally the time needed for garbage
collection. The sum of both times is the total run-time that was recorded. Notice that
all times returned by Reduce are multiples of 0.01 seconds.

With Redlog, five different benchmarks were run:

1. Command rldnf with switches off rlbnfsac; off rlbnfsm.

2. Command rldnf with switches off rlbnfsac; on rlbnfsm.

3. Command rldnf with switches on rlbnfsac; off rlbnfsm. This is the default
switch setting.

4. Command rldnf with switches on rlbnfsac; on rlbnfsm.

5. Command rlgsn with option form=dnf.

Composition of the benchmark set. ODEbase currently contains 662 models.
Of those, 199 are polynomial. We exclude 47 models that contain species with a
boundary condition from our test set. Furthermore, 16 models with species with zero
stoichiometry are excluded. Then, there are rare cases when the ODE right hand side
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Figure 5.1: Distribution of models. Gold and reddish slices represent polynomial models
that were used, respectively, were not used in our tests.

is zero because of parameters that are zero. This is true for 2 models. Excluding these
three types leaves us with 134 models.

Models with unbalanced monomials are not considered as well and leaving out 48
such models leaves us with a total of 86 models as a benchmark set. See Figure 5.1 for
a chart of the distribution of the different types of models.

Recall that Chapter 2 describes an approach on autonomous first-order ODEs
where algebraic constraints are not covered. However, computation of the tropical
equilibration for systems with algebraic constraints makes biological sense nonetheless,
since it amounts to tropicalization of the steady-state variety, cf. [94]. In this section,
we consider all such 86 models from ODEbase for benchmarking, regardless of possibly
existing algebraic constraints and thus without regard for their applicability in the sense
of Chapter 2. Nevertheless, our speed tests are performed with biologically relevant
and realistic input data.

SMTcut runs. All four SMT solvers we are using support the logic QF_LRA. We first
compare their speed with SMTcut to one another. Of the 86 models in our test set, for
68 models we could compute the DNF in less than 0.1 seconds using any solver. The
maximum number of combinations in any of those runs was 1 981 355 655 168. We do
not compare the run-times for those models, since measurement inaccuracies of the
timings are too high to draw proper conclusions. Of the remaining 18 models that took
more than 0.1 seconds to finish with any solver, only BIOMD0000000014 did not finish
within the limits of time and memory with any solver. Furthermore, MathSAT crashed
after some time while SMTcut was computing the DNF of BIOMD0000000103.

Figure 5.2 shows the run-times of the different solvers in comparison to the best
run-time with any solver. See Table A.1 for the exact timings of all solver runs that
took at least 0.1 seconds. The geometrical means for all models that finished in at least
0.1 seconds with all four solvers are:
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Figure 5.2: SMTcut run-times with different solvers vs. fastest run-time with any solver

Solver Geometric mean [s] Factor to Yices time
Yices 0.739 —
Z3 1.591 2.15
MathSAT 1.630 2.20
CVC4 2.015 2.72

Redlog runs. We first compare the run-times of Redlog with the five different com-
mands and switch settings to one another. Of the 86 models in our test set, Redlog
could compute a DNF for 55 models using any command in less than 0.1 seconds.
The maximum number of combinations in any of those runs was 2 592 000. We do
not include these models in our overview, since time measurement inaccuracies make
drawing conclusions unreliable. For computations where at least one command took at
least 0.1 seconds, both Redlog commands rldnf with switch on rlbnfsm were always
slower than any of the other Redlog commands. Sometimes, this slowdown was extreme,
as in the case of BIOMD0000000940, where it is about 300 times slower. See Figure 5.3
for a scatter plot of run-times for the different commands, or see Table A.2 for details.

For computing a DNF from a CDC-form, rldnf with switch on rlbnfsm is a com-
paratively slow choice. This indicates that off rlbnfsm as the default switch setting
for rldnf is a useful choice, at least for our purpose here.

Disregarding the commands on rlbnfsm, the geometrical means for all models that
finished with all other commands are:
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Figure 5.3: Redlog run-times for different commands vs. fastest run-time

Command Geometric mean [s] Factor to fastest time
rldnf; off rlbnfsac 1.869 —
rldnf; on rlbnfsac 2.549 1.36
rlgsn 2.582 1.38

Comparison of SMTcut vs. Redlog. For the comparison of run-times between
Redlog and SMTcut, we use the fastest timing that was measured with any Redlog
command against the fastest time for SMTcut with any solver. Again, we only consider
run-time measurements where at least one of both, SMTcut or Redlog, took at least 0.1
seconds. That leaves out 64 models. Moreover, 13 models could not be computed by
Redlog within the time and memory limits and thus no direct comparison can be made.
This leaves 9 models where both programs finished computation.

The geometric means of run-times for models where both programs finished in at
least 0.1 seconds are:

Program Geometric mean [s] Speed-up
SMTcut 0.013 —
Redlog 4.376 338

Figure 5.4 depicts a graph of the speed-up of SMTcut vs. Redlog. The exact timings
are in Table A.3.

Conclusion. SMTcut was significantly faster than Redlog in computing a DNF from a
CDC-form, on average by a factor of 338. Furthermore, several computations could be
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Figure 5.4: Redlog run-times vs. SMTcut run-times

finished within seconds with SMTcut where Redlog stopped due to memory exhaustion.
Only one computation, derived from BIOMD0000000014, could not be finished at all,
neither by SMTcut nor by Redlog.

5.2 Comparison of SMTcut with Prior Work
Now we compare SMTcut with results from Samal [92]. They also had written algorithms
to compute the tropical equilibration, namely their Algorithm 2 in Section 4.3. We
have communicated with the author of [92] and obtained a copy of the data set of
run-times that led to their Table 4.2. They used ε = 1

5 , while a value for p could not
be set in their algorithms, implying p = 1. Their benchmarks were performed on an
Intel Core 2 Quad with 2.66 GHz and 4 GiB of memory.

For a balanced comparison, we have to use their kind of tropicalization that is slightly
different from ours and is explained in their work. The differences amount to how
the logarithms of parameter values are computed and whether literal constants in the
polynomials are ignored. Regarding the computation of the tropical equilibration from
already tropicalized polynomials, their and our algorithms return equivalent results.

Furthermore, the run-times for SMTcut in this section are not comparable with those
of the last section, since in this section the time for tropicalization is included in the
run-time, whereas in the last section only the time required to compute a DNF from a
CDC-form was measured. Moreover, we obtained the original ODE systems that were
used in [92], which sometimes differ from the data sets from ODEbase used in the last
section.

We used Yices 2.6.2 as SMT solver for our benchmarks here. No run-time or memory
limit was set. Our benchmarks were done on a 2.9 GHz Intel i5-9400 CPU with 6 cores
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Figure 5.5: Run-times from Samal [92] vs. SMTcut run-times

and 32 GiB of memory. The computations in [92] were performed in 2016 and the
machine used was slower than the one used for our tests here. To compensate for
that fact, we consulted the PassMark CPU benchmark overview1 to get relative speed
ratings of the CPUs in question. Their ratings are a good indicator for the speed of
a CPU. For our i5-9400 we find a single-thread rating of 2486, while Samal’s Core 2
Quad has a rating of 1122–1153, depending on the exact model. Therefore, to make
up for the enhanced speed of our more recent machine, we divide their run-times by a
factor of 2486·2

1122+1153 ≈ 2.19.
Table A.4 shows the run-times for each BioModel under consideration for the two

algorithms and Figure 5.5 has a plot of run-times in comparison. All times are CPU
times.

The geometric mean of all adjusted run-times for Samal is 16.338 seconds, and
the geometric mean of run-times for SMTcut is 0.201 seconds. The average speed-up
between their adjusted run-time and SMTcut’s run-time is 114.

5.3 Overview of Reduction Run-Times

Recall the pipeline of reduction Algorithms 1–12 as depicted in Figure 2.1. We would
like to give an impression about the run-time of the full chain of algorithms. Our
algorithms can be applied to all models from ODEbase with polynomial ODEs where
some additional technical constraints are satisfied as described in Section 5.1. See
Figure 5.1 for a breakdown of models and the reasons why our reduction could not
be applied to some of them. We used our reduction procedure on all 86 models

1https://www.cpubenchmark.net/
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Figure 5.6: Histogram of run-times for the reduction process excluding Algorithm 11.
Only run-times less than 30 seconds are displayed.

of the category “polynomial OK”, except for BIOMD0000000014, where the tropical
equilibration could not be computed within the time limit of 2 hours. As values for ε∗
we used 1

2 , 1
5 , 1

11 , and 1
101 .

As discussed in the first section of this chapter, Algorithm 11 is a potential bottleneck
for computation and its timings have been discussed separately before. Since Algo-
rithm 11 is often the dominant part of the computation, the run-time of the rest of the
reduction is hard to assess when the overall sum of run-times is considered. This is why
here we have used SMTcut to compute and save the tropical equilibration before the
reduction procedure started. Thus, when benchmarking the whole reduction procedure
there was no call to Algorithm 11, but its pre-computed results were read instead.

Algorithm 11 returns the tropical equilibration, which describes one or multiple poly-
hedra. Yet, the number of polyhedra vastly differs from one model to another and also
with different values for ε∗. For example, the tropical equilibration for BIOMD0000000103
with ε∗ = 1

5 and p = 1 has 2889 polyhedra, whereas BIOMD0000000647 with ε∗ = 1
5

and p = 1 has only one polyhedron as its tropical equilibration. Since there is no a
priori “right” polyhedron to choose a value for D from, we chose up to three different
values from every polyhedron for every model and ran the reduction process with each
of them. This resulted in 17580 values for run-times of successful runs for different
models, values of ε∗, and values for D.

Figure 5.6 shows a histogram of the 17510 run-times for the reduction procedure
excluding Algorithm 11, where the run-time was less than 30 seconds.

If we additionally exclude the run-time of Algorithm 4 from the sum of run-times, a
histogram of the 17507 run-times where the run-time was less than 20 seconds is shown
in Figure 5.7.
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Figure 5.7: Histogram of run-times for the reduction process excluding Algorithms 4
and 11. Only run-times less than 20 seconds are displayed.

There were 1628 runs where no reduction could be computed within 20 seconds.
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Computational Examples

Based on our algorithms in Chapters 2 and 3, we have developed a software prototype
in Python realizing all methods described in this thesis. The prototype uses SymPy
[69] for symbolic computation and PySMT [33] as an interface to the SMT solver Z3
[71] that was used with Algorithms 3, 6, and 7. We used Python 3.8.10, PySMT 0.9.0,
gmpy2 2.0.8, SymPy 1.7.1, and Z3 4.8.7. As with the benchmarks, we have conducted
our computations on a standard desktop computer with an Intel i5-9400 CPU, 2.9 GHz,
6 cores, and 32 GB of main memory. The machine was running Ubuntu Linux 20.04.3
in 64-bit mode with kernel version 5.13.0. Computation times listed are CPU times.
For a general overview of computation times for our algorithms, see Chapter 5. Parts
of this chapter were previously published in [51, Section 7].

In the next section, we discuss in detail the computations for BIOMD0000000716. The
symbolic computation input is taken from ODEbase and originates from the BioModels
database [77], as described in Chapter 4. Subsequent sections showcase several further
examples in a more concise style. The focus here is on biological results. For an
illustration of our algorithms, we discuss in Section 6.8 examples where the reduction
stops at ℓ < m for various reasons.

6.1 An Epidemic Model of Avian Influenza H5N6

We consider BIOMD0000000716, which is related to the transmission dynamics of subtype
H5N6 of the influenza A virus in the Philippines in August 2017 [56]. The model specifies
four species: Susceptible birds (S_b), Infected birds (I_b), Susceptible humans (S_h),
and Infected humans (I_a), the concentrations of which over time we map to differential
variables x1, . . . , x4, respectively. The input system is given by

S =
[ d

dtx1 = − 9137
2635182x1x2 − 1

730x1 + 412
73 ,

d
dtx2 = 9137

2635182x1x2 − 4652377
961841430x2,

d
dtx3 = − 1

6159375000x2x3 − 1
25258x3 + 40758549

3650000 ,
d
dtx4 = 1

6159375000x2x3 − 112500173
2841525000000x4

]
.

We choose ε∗ = 1
5 , p = 1, and Algorithm 3 nondeterministically selects D =

(−1,−4,−7,−3) from the tropical equilibration. Algorithm 1 then yields the following
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scaled and truncated system with three time scales:

T1 =
[ d

dτ y1 = 1 ·
(
−5710625

2635182y1y2 + 412
365

)]
,

T2 =
[ d

dτ y2 = δ3 ·
(

5710625
2635182y1y2 − 116309425

192368286y2
)]
,

T3 =
[ d

dτ y3 = δ6 ·
(
−15625

25258y3 + 40758549
18250000

)
,

d
dτ y4 = δ6 ·

(
15625
15768y2y3 − 112500173

181857600y4
)]
.

Notice that the lexicographic order of the differential variables is coincidence. From
this input, Algorithm 5 produces the following reduced systems:

M0 =
[ ]
,

T1 =
[ d

dτ y1 = 1 ·
(
−5710625

2635182y1y2 + 412
365

)]
,

R1 =
[ d

dτ y2 = 0, d
dτ y3 = 0, d

dτ y4 = 0
]
,

M1 =
[
y1y2 = 1085694984

2084378125
]
,

T2 =
[ d

dτ y2 = δ3 ·
(

5710625
2635182y1y2 − 116309425

192368286y2
)]
,

R2 =
[ d

dτ y3 = 0, d
dτ y4 = 0

]
,

M2 =
[
y1y2 = 1085694984

2084378125 , 16675025y1y2 − 4652377y2 = 0
]
,

T3 =
[ d

dτ y3 = δ6 ·
(
−15625

25258y3 + 40758549
18250000

)
,

d
dτ y4 = δ6 ·

(
15625
15768y2y3 − 112500173

181857600y4
)]
,

R3 =
[ ]
.

In that course, Algorithm 6 confirms hyperbolic attractivity for all three scaled systems.
Furthermore, Algorithm 7 applies the sufficient smoothness test with

ℓ = 3, b1 = 3, b2 = 3, P1 = 1 · (−δ4 · 125
146y1), P2 = δ6 · (−δ4 · 15625

15768y2y3).

This yields E = {4}, where 4 cannot be expressed as an integer multiple of 3. Thus the
test fails, which causes a warning in Algorithm 5.

Algebraic simplification through Algorithm 8 yields the simplified reduced systems

M ′
0 =

[ ]
,

T ′
1 =

[ d
dτ y1 = 1 ·

(
−5710625

2635182y1y2 + 412
365

)]
,

R′
1 =

[ d
dτ y2 = 0, d

dτ y3 = 0, d
dτ y4 = 0

]
,

M ′
1 =

[
y1y2 = 1085694984

2084378125
]
,

T ′
2 =

[ d
dτ y2 = δ3 ·

(
−116309425

192368286y2 + 412
365

)]
,

R′
2 =

[ d
dτ y3 = 0, d

dτ y4 = 0
]
,
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M ′
2 =

[
y1 = 4652377

16675025 , y2 = 1085694984
581547125

]
,

T ′
3 =

[ d
dτ y3 = δ6 ·

(
−15625

25258y3 + 40758549
18250000

)
,

d
dτ y4 = δ6 ·

(
1884887125
1018870563y3 − 112500173

181857600y4
)]
,

R′
3 =

[ ]
.

Notice that our implementation conveniently rewrites equational constraints as mono-
mial equations with numerical right hand sides when possible. This supports readability
but is not essential for the simplifications applied here, which are based on Gröbner
basis theory. Comparing T ′

2 with T2, we see that the equation for y1y2 in M ′
1 is plugged

in. Similarly, M2 is simplified to M ′
2, which is in turn used to reduce T3 to T ′

3.
The back-transformed reduced systems as computed by Algorithm 9 read as follows:

M∗
0 =

[ ]
,

T ∗
1 =

[ d
dtx1 = 1 ·

(
− 9137

2635182x1x2 + 412
73

)]
,

R∗
1 =

[ d
dtx2 = 0, d

dtx3 = 0, d
dtx4 = 0

]
,

M∗
1 =

[
x1x2 = 1085694984

667001
]
,

T ∗
2 =

[ d
dtx2 = 1

125 ·
(
−116309425

192368286x2 + 51500
73

)]
,

R∗
2 =

[ d
dtx3 = 0, d

dtx4 = 0
]
,

M∗
2 =

[
x1 = 4652377

3335005 , x2 = 5428474920
4652377

]
,

T ∗
3 =

[ d
dtx3 = 1

15625 ·
(
−15625

25258x3 + 203792745
1168

)
,

d
dtx4 = 1

15625 ·
(

15079097
5094352815x3 − 112500173

181857600x4
)]
,

R∗
3 =

[ ]
.

We compare T ∗
1 , . . . , T ∗

3 to the input system S: In the equation for d
dtx1, the monomial

in x1 is identified as a higher order term with respect to δ and discarded by Algorithm 1.
In the equation for d

dtx2, the monomial in x1x2 has been Gröbner-reduced to a constant
modulo the defining equation in M ′

1. Similarly, the equation for d
dtx3 loses its monomial

in x2x3 by truncation of higher order terms, and in the equation for d
dtx4, the monomial

in x2x3 is Gröbner-reduced to a monomial in x3.
Notice the explicit constant factors on the right hand sides of the differential equations

in T ∗
1 , . . . , T ∗

3 . They originate from factors δbk in the respective scaled systems T1,
. . . , T3, corresponding to (2.16). They are left explicit to make the time scale of the
differential equations apparent. We see that the system T ∗

2 ◦ R∗
2 is 125 times slower

than T ∗
1 ◦R∗

1, and T ∗
3 ◦R∗

3 is another 125 times slower.
Figure 6.1 visualizes the direction fields of T ∗

1 ◦R∗
1, . . . , T ∗

3 ◦R∗
3 on their respective

manifolds M∗
0, . . . , M∗

2 along with their respective critical manifolds M∗
1, . . . , M∗

3,
where M∗

3 can be derived from M∗
2 by additionally equating the vector field of T ∗

3 ◦R∗
3

to zero:

M∗
3 =

[
x1 = 4652377

3335005 , x2 = 5428474920
4652377 , x3 = 7051228977

25000 , x4 = 441466240042010928888
327120760850763125

]
.
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Figure 6.1: Critical manifolds and direction fields of our reduced systems for
BIOMD0000000716. (a) The surface is the critical manifold M∗

1 ⊆ M∗
0 = U

projected from R4 into real (x1, x2, x3)-space. The line located at (x1, x2) ≈
(1.4, 1166.8) is the critical submanifold M∗

2 ⊆ M∗
1. The dot located at

(x1, x2, x3) ≈ (1.4, 1166.8, 282049.2) is the critical submanifold M∗
3 ⊆ M∗

2.
Both M∗

1 and M∗
2 extend to ±∞ in both x3 and x4 direction, and M∗

3
is located near (1.4, 1166.8, 282049.2, 1349.6). (b) The direction field of
T ∗

1 ◦R∗
1 on M∗

0 = U projected from R4 into real (x1, x2)-space. The curve
is the critical submanifold M∗

1 ⊆ M∗
0. (c) The direction field of T ∗

2 ◦ R∗
2

on M∗
1 projected from R4 into real (x3, x2)-space. The line is the critical

submanifold M∗
2 ⊆ M∗

1. The system here is slower than the one in (b) by
a factor of 125. (d) The direction field of T ∗

3 ◦ R∗
3 on M∗

2 projected from
R4 into real (x3, x4)-space. The dot is the critical submanifold M∗

3 ⊆ M∗
2.

The system here is slower than the one in (c) by another factor of 125.
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This list M∗
3 does not explicitly occur in the output. However, its preimage M3 is

constructed in Algorithm 5 and justifies the presence of (M2, T3, R3) in the output
there. The total computation time was 0.464 seconds.

This multiple-time scale reduction of the bird flu model emphasizes a cascade of
successive relaxations of model variables. First, the population of susceptible birds
relaxes. This relaxation is illustrated in Fig. 6.1(b). Then, the population of infected
birds relaxes as shown in Fig. 6.1(c). Finally, the populations of susceptible and infected
humans relax to a stable steady state as shown in Fig. 6.1(d), following a reduced
dynamics described by T ∗

3 .

6.2 TGF-β Pathway

BIOMD0000000101 is a simple representation of the TGF-β signaling pathway that plays
a central role in tissue homeostasis and morphogenesis, as well as in numerous diseases
such as fibrosis and cancer [105]. Concentrations over time of species Receptor 1 (RI),
Receptor 2 (RII), Ligand receptor complex-plasma membrane (lRIRII), Ligand receptor
complex-endosome (lRIRII_endo), Receptor 1 endosome (RI_endo), and Receptor 2
endosome (RII_endo), are mapped to differential variables x1, . . . , x6, respectively.
The original BIOMD0000000101 has a change of ligand concentration at time t = 2500
from 3 · 10−5 to 0.01 to reach the steady state, as in the paper. For our computation
here, we use this changed value of 0.01. The input system is given by

S =
[ d

dtx1 = − 1
100x1x2 − 3611111111333

10000000000000x1 + 333333333333333
10000000000000000x4 + 333333333333333

10000000000000000x5 + 8,
d
dtx2 = − 1

100x1x2 − 3611111111333
10000000000000x2 + 333333333333333

10000000000000000x4 + 333333333333333
10000000000000000x6 + 4,

d
dtx3 = 1

100x1x2 − 6111111111333
10000000000000x3,

d
dtx4 = 3333333333333

10000000000000x3 − 333333333333333
10000000000000000x4,

d
dtx5 = 3333333333333

10000000000000x1 − 333333333333333
10000000000000000x5,

d
dtx6 = 3333333333333

10000000000000x2 − 333333333333333
10000000000000000x6

]
We choose ε∗ = 1

5 , p = 1, and select D = (0,−4,−1,−2,−1,−5) from the tropical
equilibration. Our back-transformed reduced systems read as follows:

M∗
0 =

[ ]
,

T ∗
1 =

[ d
dtx1 = 5 ·

(
− 1

500x1x2 + 8
5

)]
,

R∗
1 =

[ d
dtx3 = 0, d

dtx2 = 0, d
dtx4 = 0, d

dtx5 = 0, d
dtx6 = 0

]
,

M∗
1 =

[
x1x2 = 800

]
,

T ∗
2 =

[ d
dtx3 = 1 ·

(
− 6111111111333

10000000000000x3 + 8
)]
,

R∗
2 =

[ d
dtx2 = 0, d

dtx4 = 0, d
dtx5 = 0, d

dtx6 = 0
]
,
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Table 6.1: Mapping of species concentrations to differential variables for the model
BIOMD0000000102

Species Species variable Diff. variable
APAF-1 A x1
Caspase 9 C9 x2
Caspase 9-XIAP complex C9X x3
XIAP X x4
APAF-1-caspase 9-XIAP complex AC9X x5
APAF-1-caspase 9 complex AC9 x6
Caspase 3 C3 x7
Caspase 3 cleaved C3_star x8
Caspase 3 cleaved-XIAP complex C3_starX x9
Caspase 9 cleaved-XIAP complex C9_starX x10
Caspase 9 cleaved C9_star x11
APAF-1-caspase 9 cleaved complex AC9_star x12
APAF-1-caspase 9 cleaved-XIAP complex AC9_starX x13

M∗
2 =

[
x1x2 = 800, x3 = 80000000000000

6111111111333
]
,

T ∗
3 =

[ d
dtx2 = 1

5 ·
(
−3611111111333

2000000000000x2 + 333333333333333
2000000000000000x6

)]
,

R∗
3 =

[ d
dtx4 = 0, d

dtx5 = 0, d
dtx6 = 0

]
.

The smoothness criteria were verified. Notice the Gröbner reduction of the equation
for d

dtx3. The total computation time was 0.648 seconds.
The multiple-time scale reduction of the TGF-β model emphasizes a cascade of

successive relaxations of concentrations of different species. First, the concentration of
receptor 1 relaxes rapidly. Then follows the membrane complex, and, even slower, the
relaxation of receptor 2.

6.3 Caspase Activation Pathway

BIOMD0000000102 is a quantitative kinetic model that examines the intrinsic pathway of
caspase activation that is essential for apoptosis induction by various stimuli including
cytotoxic stress [57]. Species concentrations over time are mapped to differential
variables x1, . . . , x13 as described in Table 6.1. The input system is given by

S =
[ d

dtx1 = − 1
500x1x2 − 1

500x1x3 − 1
500x1x10 − 1

500x1x11 − 1
1000x1 + 1

10x5 + 1
10x6

+ 1
10x12 + 1

10x13 + 1
50 ,

d
dtx2 = − 1

500x1x2 − 1
1000x2x4 − 1

5000x2x8 − 1
1000x2 + 1

1000x3 + 1
10x6 + 1

50 ,
d
dtx3 = − 1

500x1x3 + 1
1000x2x4 − 1

500x3 + 1
10x5,

d
dtx4 = − 1

1000x2x4 + 1
1000x3 − 1

1000x4x6 − 3
1000x4x8 − 1

1000x4x11 − 1
1000x4x12

− 1
1000x4 + 1

1000x5 + 1
1000x9 + 1

1000x10 + 1
1000x13 + 1

25 ,
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d
dtx5 = 1

500x1x3 + 1
1000x4x6 − 51

500x5,
d
dtx6 = 1

500x1x2 − 1
1000x4x6 + 1

1000x5 − 1
5000x6x8 − 101

1000x6,
d
dtx7 = − 1

200000x2x7 − 7
20000x6x7 − 1

20000x7x11 − 7
2000x7x12 − 1

1000x7 + 1
5 ,

d
dtx8 = 1

200000x2x7 − 3
1000x4x8 + 7

20000x6x7 + 1
20000x7x11 + 7

2000x7x12

− 1
1000x8 + 1

1000x9
d
dtx9 = 3

1000x4x8 − 1
500x9,

d
dtx10 = − 1

500x1x10 + 1
1000x4x11 − 1

500x10 + 1
10x13,

d
dtx11 = − 1

500x1x11 + 1
5000x2x8 − 1

1000x4x11 + 1
1000x10 − 1

1000x11 + 1
10x12,

d
dtx12 = 1

500x1x11 − 1
1000x4x12 + 1

5000x6x8 − 101
1000x12 + 1

1000x13,
d
dtx13 = 1

500x1x10 + 1
1000x4x12 − 51

500x13
]
.

We choose ε∗ = 1
2 , p = 1, and select D = (−4, 2, 3, 5, 5, 4,−6,−8,−4,−2,−2, 0, 0)

from the tropical equilibration. Our back-transformed reduced systems read as follows:

M∗
0 =

[ ]
,

T ∗
1 =

[ d
dtx4 = 1 ·

(
− 3

1000x4x8 + 1
25

)]
,

R∗
1 =

[ d
dtx5 = 0, d

dtx6 = 0, d
dtx12 = 0, d

dtx13 = 0, d
dtx2 = 0, d

dtx3 = 0,
d
dtx10 = 0, d

dtx11 = 0, d
dtx1 = 0, d

dtx7 = 0, d
dtx9 = 0, d

dtx8 = 0
]
,

M∗
1 =

[
x4x8 = 40

3
]
,

T ∗
2 =

[ d
dtx5 = 1

8 ·
(

2
125x1x3 − 102

125x5
)
, d

dtx6 = 1
8 ·
(

2
125x1x2 − 101

125x6
)
,

d
dtx12 = 1

8 ·
(

2
125x1x11 − 101

125x12
)
, d

dtx13 = 1
8 ·
(

2
125x1x10 − 102

125x13
)]
,

R∗
2 =

[ d
dtx2 = 0, d

dtx3 = 0, d
dtx10 = 0, d

dtx11 = 0, d
dtx1 = 0, d

dtx7 = 0,
d
dtx9 = 0, d

dtx8 = 0
]
,

M∗
2 =

[
x4x8 = 40

3 , x1x3 − 51x5 = 0, 2x1x2 − 101x6 = 0,
2x1x11 − 101x12 = 0, x1x10 − 51x13 = 0

]
,

T ∗
3 =

[ d
dtx2 = 1

16 ·
(
− 2

625x2x8 + 8
25

)]
,

R∗
3 =

[ d
dtx3 = 0, d

dtx10 = 0, d
dtx11 = 0, d

dtx1 = 0, d
dtx7 = 0, d

dtx9 = 0,
d
dtx8 = 0

]
.

The smoothness criteria were verified. Gröbner reduction did not simplify any poly-
nomial. The total computation time was 4.16 seconds, of which Algorithm 4 took
2.838 seconds.

The multiple-time scale reduction of the caspase activation model emphasizes a
cascade of successive relaxations. First, the inhibitor of apoptosis XIAP binds rapidly
to the cleaved caspase. Then, the four APAF complexes are formed. Finally, the
caspase 9 is recruited to the apoptosome.
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6.4 Avian Influenza Bird-To-Human Transmission

BIOMD0000000709 describes bird-to-human transmission of different strains of avian
influenza A viruses, such as H5N1 and H7N9 [58]. Species concentrations over time
of Susceptible avians (S_a), Infected avians (I_a), Susceptible humans (S_h), Infected
humans (I_h), and Recovered humans (R_h) are mapped to differential variables x1,
. . . , x5, respectively. The input system is given by

S =
[ d

dtx1 = − 1
8000000000x

3
1 + 127

20000000x
2
1 − 9

500000000x1x2 − 1
200x1,

d
dtx2 = 9

500000000x1x2 − 37123
50000000x2,

d
dtx3 = − 3

500000000x2x3 − 391
10000000x3 + 30,

d
dtx4 = 3

500000000x2x3 − 4445391
10000000x4,

d
dtx5 = 1

10x4 − 391
10000000x5

]
.

We choose ε∗ = 1
5 , p = 1, and select D = (−7, 0,−8, 3,−2) from the tropical

equilibration. Our back-transformed reduced systems read as follows:

M∗
0 =

[ ]
,

T ∗
1 =

[ d
dtx1 = 1 ·

(
− 1

8000000000x
3
1 + 127

20000000x
2
1

)]
,

R∗
1 =

[ d
dtx4 = 0, d

dtx2 = 0, d
dtx3 = 0, d

dtx5 = 0
]
,

M∗
1 =

[
x3

1 − 50800x2
1 = 0

]
,

T ∗
2 =

[ d
dtx4 = 1

5 ·
(

3
100000000x2x3 − 4445391

2000000x4
)]
,

R∗
2 =

[ d
dtx2 = 0, d

dtx3 = 0, d
dtx5 = 0

]
.

The smoothness criteria were verified. Gröbner reduction did not simplify any polyno-
mial. The total computation time was 0.317 seconds.

The multiple-time scale reduction of this avian influenza model emphasizes a cascade
of successive relaxations of different model variables. First, the susceptible bird popula-
tion relaxes rapidly. The reduced equation T1 and manifold M1 suggest that the bird
population dynamics is of the Allee type and evolves toward the stable extinct state. It
follows the relaxation of the infected human population that also evolves toward the
extinct state, the end of the epidemics.

6.5 Spontaneous Oscillations in Excitable Cells of
Dictyostelium

BIOMD0000000099 describes interacting proteins that account for spontaneous oscil-
lations in adenylyl cyclase activity that are observed in homogenous populations of
Dictyostelium cells [54]. Species concentrations over time are mapped to differential
variables x1, . . . , x7 as described in Table 6.2. The input system is given by:
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Table 6.2: Mapping of species concentrations to differential variables for the model
BIOMD0000000099

Species Species variable Diff. variable
Extracellular cAMP Ex_cAMP x1
Intracellular cAMP In_cAMP x2
Protein kinase PKA PKA x3
Cytoplasmic phosphodiesterase REGA x4
Adenylyl cyclase ACA x5
cAMP receptor CAR1 x6
Protein kinase ERK2 ERK2 x7

S =
[ d

dtx1 = −31
10x1 + 3

5x5,
d
dtx2 = −x2x4 + 29

100x5,
d
dtx3 = 5

2x2 − 3
2x3,

d
dtx4 = −13

10x4x7 + 2,
d
dtx5 = − 9

10x5 + 7
5x7,

d
dtx6 = 33x1 − 9

2x3x6,
d
dtx7 = −4

5x3x7 + 3
5x6

]
We choose ε∗ = 1

2 , p = 1, and select D =
(

7
4 ,

1
2 ,

1
2 ,

1
4 ,−

5
4 ,−

7
4 ,−

5
4

)
from the tropical

equilibration. Our back-transformed reduced systems read as follows:

M∗
0 =

[ ]
,

T ∗
1 =

[ d
dtx1 = 4 ·

(
−31

40x1 + 3
20x5

)]
,

R∗
1 =

[ d
dtx6 = 0, d

dtx4 = 0, d
dtx3 = 0, d

dtx5 = 0, d
dtx2 = 0, d

dtx7 = 0
]
,

M∗
1 =

[
31x1 − 6x5 = 0

]
,

T ∗
2 =

[ d
dtx6 = 2 3

2 ·
(

9
8
√

2x3x6 + 99
62

√
2x5

)]
,

R∗
2 =

[ d
dtx4 = 0, d

dtx3 = 0, d
dtx5 = 0, d

dtx2 = 0, d
dtx7 = 0

]
,

M∗
2 =

[
31x1 − 6x5 = 0, 31x3x6 − 44x5 = 0

]
,

T ∗
3 =

[ d
dtx4 = 2 5

4 ·
(
−13

40
4√8x4x7 + 1

2
4√8
)]
,

R∗
3 =

[ d
dtx3 = 0, d

dtx5 = 0, d
dtx2 = 0, d

dtx7 = 0
]
,

M∗
3 =

[
31x1 − 6x5 = 0, 31x3x6 − 44x5 = 0, x4x7 = 20

13
]
,

T ∗
4 =

[ d
dtx3 = 2 ·

(
5
4x2 − 3

4x3
)]
,

R∗
4 =

[ d
dtx5 = 0, d

dtx2 = 0, d
dtx7 = 0

]
,
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M∗
4 =

[
31x1 − 6x5 = 0, 155x2x6 − 132x5 = 0, x4x7 = 20

13 , 5x2 − 3x3 = 0
]
,

T ∗
5 =

[ d
dtx5 = 1 ·

(
− 9

10x5 + 7
5x7

)]
,

R∗
5 =

[ d
dtx2 = 0, d

dtx7 = 0
]
,

M∗
5 =

[
93x1 − 28x7 = 0, 465x2x6 − 616x7 = 0, x4x7 = 20

13 , 5x2 − 3x3 = 0,
9x5 − 14x7 = 0

]
,

T ∗
6 =

[ d
dtx2 = 2− 1

4 ·
(
− 4√2x2x4 + 203

450
4√2x7

)]
,

R∗
6 =

[ d
dtx7 = 0

]
,

M∗
6 =

[
93x1 − 28x7 = 0, 2640x4 − 899x6 = 0, x4x7 = 20

13 ,

5400x3 − 2639x2
7 = 0, 9x5 − 14x7 = 0, 9000x2 − 2639x2

7 = 0
]
,

T ∗
7 =

[ d
dtx7 = 2− 1

2 ·
(

1584
899

√
2x4 − 2639

6750
√

2x3
7

)]
,

R∗
7 =

[ ]
.

Notice the irrational coefficients in the scaled systems T ∗
1 , . . . , T

∗
7 . In the course of

the computation, Algorithm 1 sets q = 4 in l.13 because of the denominators of the dk.
This in turn causes δ = εq = 1

2
1
4 = 2− 1

4 and the powers of δ reappear in our equations.
Furthermore, Gröbner reduction has not only simplified the manifold-defining equations
M∗

4 , M∗
5 , and M∗

6 , but also the equations for d
dtx2, d

dtx6, and d
dtx7. The smoothness

criteria were verified. The total computation time was 1.192 seconds.
The multiple-time scale reduction of the caspase activation model emphasizes a

cascade of successive relaxations. The concentration of the species relax in the following
order: extracellular cAMP, cAMP receptor, cytoplasmic phosphodiesterase, protein
kinase PKA, adenylyl cyclase, intracellular cAMP, and protein kinase ERK2.

6.6 Potential HIV-1 Therapy With Modified Viruses

BIOMD0000000707 describes a mathematical model for a double infection with HIV-1
and a genetically engineered virus [86]. Species concentrations over time for nor-
mal cells (Normal_Th_cells), pathogen virus (Pathogen_Virus), single-infected cells
(Single_Infected_Th_Cells), recombinant virus (Recombinant_Virus), and doubled-
infected cells (Double_Infected_Th_Cells) are mapped to differential variables x1,
. . . , x5, respectively. The input system is given by:

S =
[ d

dtx1 = − 1
250x1x2 − 1

100x1 + 2,
d
dtx2 = −2x2 + 50x3,
d
dtx3 = 1

250x1x2 − 1
250x3x4 − 33

100x3,
d
dtx4 = −2x4 + 2000x5,
d
dtx5 = 1

250x3x4 − 2x5
]

We choose ε∗ = 1
2 , p = 1, and select D = (−5,−4, 1,−10, 0) from the tropical
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equilibration. Our back-transformed reduced systems read as follows:

M∗
0 =

[ ]
,

T ∗
1 =

[ d
dtx3 = 4 ·

(
1

1000x1x2 − 1
1000x3x4

)]
,

R∗
1 =

[ d
dtx2 = 0, d

dtx4 = 0, d
dtx5 = 0, d

dtx1 = 0
]
,

M∗
1 =

[
x1x2 − x3x4 = 0

]
,

T ∗
2 =

[ d
dtx2 = 2 · (−x2 + 25x3) , d

dtx4 = 2 · (−x4 + 1000x5) ,
d
dtx5 = 2 ·

(
1

500x1x2 − x5
)]
,

R∗
2 =

[ d
dtx1 = 0

]
,

M∗
2 =

[
x2 − 25x3 = 0, 2x2x5 − 25x5 = 0, x1x2 − 500x5 = 0,
x4 − 1000x5 = 0, x1x5 − 40x2

5 = 0
]
,

T ∗
3 =

[ d
dtx1 = 1

16 · (−32x5 + 32)
]
,

R∗
3 =

[ ]
.

The smoothness criteria were verified. Notice that the Gröbner simplification reduced
the equations for d

dtx1 and d
dtx5. It also reduced M∗

2 and introduced one additional
term in the process. Before the reduction, we had

M2 =
[
x1x2 − x3x4 = 0, 32x2 − 25x3 = 0,
128x4 − 125x5 = 0, 128x3x4 − 125x5 = 0

]
and obtained through simplification

M∗
2 =

[
32x2 − 25x3 = 0, 32x2x5 − 25x5 = 0,
128x1x2 − 125x5 = 0, 128x4 − 125x5 = 0, 4x1x5 − 5x2

5 = 0
]
.

The computation time was 0.755 seconds.
The multiple-time scale reductions of the double virus infection model emphasizes

a cascade of successive relaxations. First, the number of single infected cells relaxes,
next are the pathogen virus, recombinant virus, and double-infected cells. Lastly, the
number of normal cells relaxes.

6.7 Innate Immune Response to Influenza Virus

BIOMD0000000710 describes a mathematical model based on interferon-induced resis-
tance to infection of respiratory epithelial cells and the clearance of infected cells by
natural killers [40]. Species concentrations over time are mapped to differential variables
x1, . . . , x7 as described in Table 6.3.
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Table 6.3: Mapping of species concentrations to differential variables for the model
BIOMD0000000710

Species Species variable Diff. variable
Healthy cells U_H x1
Partially infected cells U_E x2
Infected cells U_I x3
Resistant cells U_R x4
Virus particles V x5
Interferon IFN x6
Natural killers K x7

S =
[ d

dtx1 = − 3
1000x1x5 − 7x1x6 − 1

100x1 + 5000000,
d
dtx2 = 3

1000x1x5 − 3
1000000x2x7 − 1

2x2,
d
dtx3 = 1

2x2 − 3
1000000x3x7 − 1

100x3,
d
dtx4 = 7x1x6 − 1

100x4,
d
dtx5 = 1

100x3 − 26
5 x5,

d
dtx6 = 3

1000000x3 − 4x6,
d
dtx7 = 1

1000x3 − 1
25x7 + 32000

]
We choose ε∗ = 1

5 , p = 1, and select D = (−8,−10,−10,−13,−6,−1,−8) from the
tropical equilibration. Our back-transformed reduced systems read as follows:

M∗
0 =

[ ]
,

T ∗
1 =

[ d
dtx1 = 25 ·

(
− 3

25000x1x5 − 7
25x1x6 + 200000

)]
,

R∗
1 =

[ d
dtx5 = 0, d

dtx6 = 0, d
dtx2 = 0, d

dtx3 = 0, d
dtx7 = 0, d

dtx4 = 0
]
,

M∗
1 =

[
3x1x5 + 7000x1x6 − 5000000000 = 0

]
,

T ∗
2 =

[ d
dtx5 = 5 ·

(
1

500x3 − 26
25x5

)
, d

dtx6 = 5 ·
(

3
5000000x3 − 4

5x6
)]
,

R∗
2 =

[ d
dtx2 = 0, d

dtx3 = 0, d
dtx7 = 0, d

dtx4 = 0
]
,

M∗
2 =

[
x1x3 = 260000000000000

573 , x3 − 520x5 = 0, 3x3 − 4000000x6 = 0
]
,

T ∗
3 =

[ d
dtx2 = 1 ·

(
− 3

1000000x2x7 − 1
2x2 + 500000000

191

)
,

d
dtx3 = 1 ·

(
1
2x2 − 3

1000000x3x7
)]
,

R∗
3 =

[ d
dtx7 = 0, d

dtx4 = 0
]
,
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M∗
3 =

[
12500000x1 − 39x2

7 − 6500000x7 = 0, x3 − 520x5 = 0,
3x3 − 4000000x6 = 0, 500000x2 − 3x3x7 = 0,
1719x3x

2
7 + 286500000x3x7 − 250000000000000000000 = 0

]
,

T ∗
4 =

[ d
dtx7 = 1

25 ·
(

1
40x3 − x7 + 800000

)]
,

R∗
4 =

[ d
dtx4 = 0

]
,

M∗
4 =

[
12500000x1 − 39x2

7 − 6500000x7 = 0, 13x5 − x7 + 800000 = 0,
100000x6 − 3x7 + 2400000 = 0, 12500x2 − 3x2

7 + 2400000x7 = 0,
x3 − 40x7 + 32000000 = 0, 1719x3

7 − 1088700000x2
7

− 229200000000000x7 − 6250000000000000000 = 0
]
,

T ∗
5 =

[ d
dtx4 = 1

125 ·
(
−5

4x4 + 56875000000
191

)]
,

R∗
5 =

[ ]
.

The smoothness criteria were verified. Notice the Gröbner simplification of M∗
2 , M∗

3 ,
and M∗

4 as well as the equations for d
dtx2, d

dtx3, d
dtx4, and d

dtx7. The computation time
was 3.445 seconds.

The multiple-time scale reduction of this influenza model emphasizes a cascade of
successive relaxations of different model variables. First the concentration of healthy
cells relaxes. Then follow the virus particles and interferon. On the next, even slower,
time scale the concentration of the partially infected and infected cells relaxes. Then
the concentration of natural killers relaxes, and lastly the concentration of resistant
cells.

6.8 Further Computational Examples

In the last sections we have discussed computations for several systems from ODEbase.
While the focus was on biological results, we discuss here examples where reduction
stops at ℓ < m for various reasons.

6.8.1 Hypertoxicity of a Painkiller

BIOMD0000000609 describes the metabolism and the related hepatotoxicity of aceta-
minophen, a painkiller [85]. The species concentrations over time of Sulphate PAPS,
GSH, NAPQI, Paracetamol APAP, and Protein adducts are mapped to differential
variables x1, . . . , x5, respectively. The input system is given by

S =
[ d

dtx1 = −226000000000000x1x4 − 2x1 + 53
2000000000000000 ,

d
dtx2 = −1600000000000000000x2x3 − 2x2 + 687

50000000000000000 ,
d
dtx3 = −1600000000000000000x2x3 − 220063

2000 x3 + 63
200x4,

d
dtx4 = −226000000000000x1x4 + 63

2000x3 − 661
200x4,

d
dtx5 = 110x3

]
.
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Table 6.4: Mapping of species concentrations to differential variables for the model
BIOMD0000000726

Species Species variable Differential variable
Susceptible dogs S_d x1
Exposed dogs E_d x2
Infectious dogs I_d x3
Recovered dogs R_d x4
Susceptible humans S_h x5
Exposed humans E_h x6
Infectious humans I_h x7
Recovered humans R_h x8

Since there is only one monomial on the right hand side of the equation for d
dtx5,

equilibration is impossible. This causes Algorithm 4 to return in l.23 a disjunctive
normal form Π equivalent to “false,” which describes the empty set. Hence Algorithm 3
returns ⊥, and Algorithm 1 returns the empty list. The total computation time was
0.046 seconds.

6.8.2 Transmission Dynamics of Rabies

BIOMD0000000726 examines the transmission dynamics of rabies between dogs and
humans [89]. Species concentrations over time are mapped to differential variables x1,
. . . , x8 as described in Table 6.4. The input system is given by

S =
[ d

dtx1 = − 79
500000000x1x3 − 17

100x1 + 18
5 x2 + x4 + 3000000,

d
dtx2 = 79

500000000x1x3 − 617
100x2,

d
dtx3 = 12

5 x2 − 27
25x3,

d
dtx4 = 9

100x1 + 9
100x2 − 27

25x4,
d
dtx5 = − 229

100000000000000x3x5 − 3
1000x5 + 18

5 x6 + x8 + 15400000,
d
dtx6 = 229

100000000000000x3x5 − 6543
1000x6,

d
dtx7 = 12

5 x6 − 1343
1000x7,

d
dtx8 = 27

50x6 − 1003
1000x8

]
.

We choose ε∗ = 1
5 , p = 1, and D = (−10,−10,−11,−9,−14,−7,−8,−7) is selected

by Algorithm 3 from the tropical equilibration. Algorithm 1 then yields the following
scaled and truncated system with three time scales:

T1 =
[ d

dτ y1 = 1 ·
(
−395

256y1y3 + 18
25y2

)
,

d
dτ y2 = 1 ·

(
395
256y1y3 − 617

500y2
)
,

d
dτ y6 = 1 ·

(
28625
16384y3y5 − 6543

5000y6
)]
,
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T2 =
[ d

dτ y3 = δ ·
(

12
25y2 − 27

25y3
)
,

d
dτ y4 = δ ·

(
9
20y1 + 9

20y2 − 27
25y4

)
,

d
dτ y7 = δ ·

(
12
25y6 − 1343

1000y7
)
,

d
dτ y8 = δ ·

(
27
50y6 − 1003

1000y8
)]
,

T3 =
[ d

dτ y5 = δ5 ·
(

4928
3125 − 15

8 y5
)]
.

Equating the right hand sides F1 of the differential equations in T1 to zero equivalently
yields

M1 = [ − 9875y1y3 + 4608y2 = 0, 49375y1y3 − 39488y2 = 0,
17890625y3y5 − 13400064y6 = 0].

In l.1 of Algorithm 6, U ◦M1 is tested for satisfiability. This fails, which means that
the corresponding manifold M1 is empty over the positive first orthant. Consequently,
Algorithms 5, 8, and 9 return empty lists. The total computation time was 0.921 seconds.

6.8.3 Negative Feedback Loop Between Tumor Suppressor and
Oncogene

BIOMD0000000156 describes the dynamics of a negative feedback loop between the
tumor suppressor protein p53 and the oncogene protein Mdm2 in human cells [34]. The
species concentrations over time for P53 (x), Mdm2 (y), and Precursor Mdm2 (y0) are
mapped to differential variables x1, . . . , x3, respectively. The input system is given by

S =
[ d

dtx1 = −37
10x1x2 + 2x1,

d
dtx2 = − 9

10x2 + 11
10x3,

d
dtx3 = 3

2x1 − 11
10x3

]
.

We choose ε∗ = 1
2 , p = 1, and select D = (2, 1, 1). Algorithm 1 then yields the following

scaled and truncated system with two time scales:

T1 =
[ d

dτ y1 = 1 ·
(
−37

40y1y2 + y1
)]
,

T2 =
[ d

dτ y2 = δ ·
(
− 9

10y2 + 11
10y3

)
,

d
dτ y3 = δ ·

(
3
4y1 − 11

10y3
)]
.

Analogously to the previous section we obtain M1 = [−37y1y2 + 40y1 = 0], for which we
find M1 to be non-empty over the positive first orthant in l.1 of Algorithm 6. However,
the test for hyperbolic attractivity in l.20 fails with M1 and the Hurwitz conditions

Γ =
{

37
40y2 − 1 > 0

}
,

so that “false” is returned. Therefore, Algorithm 5 breaks the for-loop in l.10 with
k = 1 and returns the empty list in l.19. Obviously, the simplified and back-translated
systems are empty lists as well. The total computation time was 0.172 seconds.
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6.8.4 CD4 T-Cells in the Spread of HIV

BIOMD0000000663 describes how CD4 T-cells can influence the spread of the HIV
infection [108]. Species concentrations over time for Infected T-cells (x), Uninfected
T-cells (y), and Free viruses (v) are mapped to variables x1, . . . , x3, respectively. The
input system is given by

S =
[ d

dtx1 = − 1
10x

2
1x3 − 1

10x1x2x3 + 4
5x1x3 − 1

10x1,
d
dtx2 = − 1

10x1x2x3 + 1
5x1x3 − 1

10x
2
2x3 + x2x3 − 1

5x2,
d
dtx3 = x2 − 1

2x3
]
.

We choose ε∗ = 1
2 , p = 5, and D = (1, 4, 3). The choice of p = 5 causes fractional

powers of numbers in the scaled and truncated system

T1 =
[ d

dτ y3 = 1 · (y2 − y3)
]
,

T2 =
[ d

dτ y2 = δ7 ·
(

4
5

5√4 y1y3 − 4
5

5√4 y2
)]
,

T3 =
[ d

dτ y1 = δ12 ·
(

4
5

5√4 y1y3 − 4
5

5√4 y1
)]
.

However, such input is not accepted with the SMT logic QF_NRA used in Algorithm
6. As discussed in Sect. 2.3.6, we catch the corresponding error from the SMT solver,
convert to floats, and restart, which solves the problem.

Similarly to the previous example, the Hurwitz test in l.20 of Algorithm 6 succeeds
for k = 1 but fails for k = 2 in Algorithm 5. Since there are fewer than two reduced
systems, we return the empty list. Consequently, the list of simplified reduced systems
and the corresponding list of back-transformed systems are empty as well. The total
computation time was 0.426 seconds.
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Chapter 7

Conclusion and Outlook

We introduced a symbolic method for the reduction of systems of ordinary differential
equations that describe the species kinetics of biochemical reaction networks. Our
method is applicable to systems with three or more time scales, in contrast to established
approaches that are limited to only two time scales. For the first time, hyperbolic
attractivity conditions are verified, which are required for the reductions to be valid.
Our theoretical framework is accompanied by detailed algorithms and a prototypical
implementation.

To test our new method, we have compiled ODEbase, a database of symbolic compu-
tation input of biochemical processes. It has been populated with data from BioMod-
els, a leading database of biochemical processes [77]. ODEbase is freely available at
https://odebase.org. From this database we have taken numerous examples and
tested our algorithms with this real-world data. Several examples were presented to
illustrate the feasibility of our reduction method.

As part of the scaling of ODE systems to be reduced, tropical equilibrations have to
be computed. As a constituent part, the computation of a DNF of constraints over the
reals was a potential bottleneck for computation. To overcome this, we presented a new
algorithm together with a theoretical description in the form of a calculus. Both rely
on Satisfiability Modulo Theories solvers for their calculations. This new algorithm
was also prototypically implemented and benchmarked against Redlog [24]. The results
indicate that the new method performs up to 10 000 times faster than Redlog. Moreover,
the algorithm was able to complete computations where Redlog failed due to memory
exhaustion.

Finally, we point out some problems and questions for further work. The process of
verification of hyperbolic attractivity of the scaled ODE system sometimes stops early.
One possible reason is the existence of linear conservation laws for the fast system that
necessarily cause a zero eigenvalue of the Jacobian in Algorithm 6, l.9–10. A theorem
by Schneider and Wilhelm [96] may in some cases reduce this to the hyperbolically
attractive case. Furthermore, linear conservation laws must be considered subject
to scalings, as is discussed by Lax and Walcher [55] for the case of two time scales.
Since about half of all systems from ODEbase contain some sort of algebraic constraint,
pursuing this would enhance the applicability of our method and is left for future work.

It is interesting to consider cases where hyperbolic attractivity fails, but hyperbolicity
still holds. According to [18], invariant manifolds exist in these cases. This can be
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tested algorithmically as well, see e.g. the approach by Routh [32, Chapter V, §4], but
the computations become more involved.

Moreover, it is interesting to be able to handle parametric input systems, that
is, systems where the reaction constants kc→c′ of (1.8) are not replaced by numeric
values but remain symbolic. This requires the use of quantifier elimination techniques
instead of SMT solving, which is however well understood and supported [107, 26, 49].
Unfortunately, our use of tropical geometry here is not compatible with this setup,
since it introduces logarithms of polynomials in the parametric coefficients in (1.30).
Different tropicalization methods, which however do not fit our abstract view on scaling
in Section 1.5, require only logarithms of individual parametric coefficients [94]. Such a
more special form would allow the use of abstraction in the logic engine. A workaround
for reaction constants close to the given numeric values however seems possible and
allows to re-introduce parameters into our reduced systems.

From the perspective of a user of our algorithms, it would be desirable to automatically
choose good values for ε∗ and D in (1.26).

The calculus of Chapter 3 could be useful in other domains as well. Since it removes
one junctor alteration by converting a CDC-form to a DNF it should be possible to
apply it recursively to reduce a junctor alteration of arbitrary depth to a single DNF.
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Appendix A

Tables With Run-Times

Table A.1: SMTcut run-times in seconds with different solvers for runs that took at
least 0.1 seconds, sorted by minimal run-time. ’Combos’ is the number
of combinations; bold numbers mark the lowest run-time. ’c’, ’t’, and ’m’
signify crash, timeout, and memory exceeded, respectively.
Model Combos CVC4 MathSAT Yices Z3

BIOMD0000000030 ≈ 1010 0.147 0.070 0.031 0.056
BIOMD0000000002 ≈ 1011 0.177 0.109 0.043 0.076
BIOMD0000000500 ≈ 1011 0.209 0.160 0.079 0.160
BIOMD0000000011 ≈ 1011 0.223 0.185 0.096 0.258
BIOMD0000000028 ≈ 109 0.441 0.361 0.147 0.380
BIOMD0000000637 ≈ 1012 0.644 0.402 0.216 0.390
BIOMD0000000599 ≈ 1016 0.976 0.875 0.355 0.916
BIOMD0000000365 ≈ 1023 1.697 0.995 0.490 0.649
BIOMD0000000147 ≈ 1016 1.931 1.588 0.733 1.586
BIOMD0000000492 ≈ 1025 7.245 5.068 2.247 6.240
BIOMD0000000102 ≈ 1010 6.076 7.501 2.690 6.844
BIOMD0000000407 ≈ 1016 5.990 8.331 3.606 14.421
BIOMD0000000431 ≈ 1016 10.491 9.472 4.107 9.329
BIOMD0000000491 ≈ 1024 14.922 11.217 5.227 13.420
BIOMD0000000638 ≈ 1027 17.172 9.694 10.364 10.415
BIOMD0000000501 ≈ 1025 94.272 168.461 40.220 85.869
BIOMD0000000103 ≈ 1018 182.722 c 205.993 128.633
BIOMD0000000014 ≈ 1067 t m m m
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Table A.2: Redlog run-times in seconds for completed runs that took at least 0.1 seconds,
sorted by minimal run-times. ’Combos’ is the number of combinations; bold
numbers mark the lowest run-time; ’t’ signifies timeout.

Model Combos rldnf
rldnf

sm
rldnf
sac

rldnf
sac+sm rlgsn

BIOMD0000000692 19 200 0.05 0.11 0.06 0.06 0.06
BIOMD0000000770 1050 0.07 0.37 0.06 0.32 0.08
BIOMD0000000871 4608 0.11 5.82 0.08 0.78 0.06
BIOMD0000000647 30 720 0.14 7.11 0.35 3.66 0.35
BIOMD0000000361 20 736 1.00 148.84 0.47 4.63 0.49
BIOMD0000000769 31 360 0.75 52.36 1.27 26.03 1.31
BIOMD0000000759 88 000 1.45 3.04 1.49 2.26 1.56
BIOMD0000000940 73 728 4.92 1607.01 25.58 1325.86 25.15
BIOMD0000000447 ≈ 106 9.83 t 70.15 t 73.78
BIOMD0000000082 ≈ 106 55.42 221.58 21.10 40.98 21.25
BIOMD0000000026 ≈ 106 90.67 t 63.85 1236.03 63.05
BIOMD0000000163 153 600 127.87 t 347.00 t 349.17

Table A.3: SMTcut vs. Redlog run-times in seconds for completed runs that took at
least 0.1 seconds. ’Combos’ is the number of combinations; bold numbers
mark the lowest run-time; ’m’ signifies memory exceeded.

Model Combos Redlog SMTcut Speed-up

BIOMD0000000647 30 720 0.14 0.007 20
BIOMD0000000940 73 728 4.92 0.009 547
BIOMD0000000163 153 600 127.87 0.009 14208
BIOMD0000000759 88 000 1.45 0.010 145
BIOMD0000000447 ≈ 106 9.83 0.011 894
BIOMD0000000361 20 736 0.47 0.012 39
BIOMD0000000082 ≈ 106 21.10 0.013 1623
BIOMD0000000026 ≈ 106 63.05 0.032 1970
BIOMD0000000769 31 360 0.75 0.033 23
BIOMD0000000028 ≈ 109 m 0.147 —
BIOMD0000000637 ≈ 1012 m 0.216 —
BIOMD0000000599 ≈ 1016 m 0.355 —
BIOMD0000000365 ≈ 1023 m 0.490 —
BIOMD0000000147 ≈ 1016 m 0.733 —
BIOMD0000000492 ≈ 1025 m 2.247 —
BIOMD0000000102 ≈ 1010 m 2.690 —
BIOMD0000000407 ≈ 1016 m 3.606 —
BIOMD0000000431 ≈ 1016 m 4.107 —
BIOMD0000000491 ≈ 1024 m 5.227 —
BIOMD0000000638 ≈ 1027 m 9.694 —
BIOMD0000000501 ≈ 1025 m 40.220 —
BIOMD0000000103 ≈ 1018 m 128.633 —
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Table A.4: Run-times for SMTcut vs. run-times from Samal [92]. Run-times are in
seconds.

Model Samal [s] Adjusted [s] SMTcut [s] Speed-up

BIOMD0000000233 3.139 1.433 0.024 131
BIOMD0000000125 3.975 1.815 0.031 128
BIOMD0000000156 3.973 1.814 0.036 110
BIOMD0000000159 3.977 1.816 0.037 107
BIOMD0000000289 6.794 3.102 0.050 136
BIOMD0000000040 5.538 2.529 0.057 97
BIOMD0000000150 9.307 4.250 0.063 148
BIOMD0000000460 3.963 1.810 0.072 55
BIOMD0000000194 13.568 6.195 0.076 179
BIOMD0000000459 4.538 2.072 0.079 57
BIOMD0000000072 13.874 6.335 0.082 169
BIOMD0000000077 16.259 7.424 0.098 166
BIOMD0000000199 11.979 5.470 0.110 109
BIOMD0000000101 11.698 5.342 0.119 98
BIOMD0000000198 14.720 6.721 0.124 119
BIOMD0000000035 20.258 9.250 0.159 127
BIOMD0000000361 29.244 13.353 0.183 160
BIOMD0000000193 41.923 19.143 0.190 221
BIOMD0000000046 75.383 34.421 0.226 334
BIOMD0000000080 36.428 16.634 0.226 161
BIOMD0000000082 31.983 14.604 0.242 132
BIOMD0000000287 36.821 16.813 0.281 131
BIOMD0000000226 49.464 22.586 0.289 171
BIOMD0000000038 573.775 261.998 0.297 1932
BIOMD0000000163 48.235 22.025 0.305 158
BIOMD0000000257 38.489 17.575 0.335 115
BIOMD0000000026 62.607 28.588 0.348 180
BIOMD0000000270 192.741 88.010 0.438 440
BIOMD0000000001 76.953 35.138 0.486 158
BIOMD0000000122 244.158 111.488 0.718 340
BIOMD0000000123 333.315 152.199 0.751 444
BIOMD0000000009 281.302 128.448 0.770 365
BIOMD0000000028 190.101 86.804 1.023 186
BIOMD0000000030 256.953 117.330 1.423 181
BIOMD0000000002 646.381 295.151 2.856 226
BIOMD0000000102 3833.583 1750.495 3.703 1035
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